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Analytical estimate of percolation for multicomponent fluid mixtures
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The size of a dense region of a particular constituent (Ls) in a nonuniform distribution of particles generated
in a multicomponent fluid mixture can develop under certain conditions. If both the attractive force between an
Ls particle and a particle of the other constituents (L s

c) and the attractive force betweenL s
c particles are much

weaker than that betweenLs particles, then the percolation due to the growth of the dense region ofLs particles
can hardly be affected by the addition ofL s

c particles into the fluid mixture. In that case, dense regions
composed ofL s

c particles can be formed passively. To derive these results, it is assumed that such a dense
region is an ensemble of particles bound to each other as particle pairs that satisfy the conditionEi j 1ui j (r )
<0, whereEi j is the relative kinetic energy fori andj particles andui j (r ) is the pair potential. The percolation
in the fluid mixture can be estimated analytically. According to the pair connectedness functionPi j (r ) derived
for evaluating the percolation, the probability that anLs particle is located near anotherLs particle can
be insensitive to the addition ofL s

c particles. The magnitude ofPi j (r ) can be maximized for a pair ofi - j
particles interacting with the most strongly attractive force having the largest value of the effective ranges in a
fluid mixture system. These particles can contribute to making the phase behavior of the fluid mixture com-
plicated.
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I. INTRODUCTION

The distribution of particles in a multicomponent flu
mixture can vary considerably depending on its compositi
upon the nature of its composition, the densities of const
ents, its temperature, and so on. Microscopically dense
gions of particular particles formed in the fluid mixture c
significantly influence its various macroscopic phenome
found for the fluid mixture. The present interest is focused
estimating the mean size of the dense regions. A criterion
the growth of dense regions into macroscopic size can
given as that for the growth of the mean size of the de
regions. Using this measure, it is possible to evaluate
percolation threshold at which the dense regions can g
without bounds due to the contact between microscopic
dense regions.

For a binary fluid mixture, the viscosity anomaly can
induced near the consolute point corresponding to the crit
transition point for demixing the two constituents macr
scopically. Many experimental results concerning the reve
tion of the viscosity anomaly are known@1#. It is expected
that hydrodynamical transport phenomena are influenced
the generation of a nonuniform distribution of particles in
fluid mixture. The nonuniform distribution of particular pa
ticles can be a significant factor inducing the viscos
anomaly, since this nonuniformity should develop near
consolute point.

For temperatures above the consolute point, a binary m
ture composed of constituentsL1 andL2 should be macro-
scopically homogeneous. For temperatures below the co
lute point, the binary mixture separates into anL1-rich phase
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and anL2-rich phase with the formation of a boundary b
tween the two phases. If the temperature is raised near
consolute point, dense regions ofL2 particles in theL1-rich
phase should develop microscopically near the bound
while dense regions ofL1 particles in theL2-rich phase
should develop microscopically near the boundary. If coll
dal particles preferring theL2-rich phase are distributed in
this complex medium, those particles should aggregate c
to the boundary in theL2-rich phase near the consolu
point. In contrast, colloidal particles preferring theL1-rich
phase should aggregate close to the boundary in theL1-rich
phase near the consolute point. Such phenomena were
onstrated experimentally for the binary fluid mixtures of 2,
lutidine plus water@2#. Thus, it is considered that the deve
opment of the nonuniform distribution of each constituent
binary fluid mixtures can induce the aggregation of colloid
particles@3# or the contraction of a flexible linear polyme
@4# in the binary fluid mixtures.

Density fluctuations in a specific constituent in a mul
component fluid mixture can induce density fluctuations
other constituents as predicted from the aggregation of
colloidal particles described above. This phenomenon can
a factor complicating a phase diagram for the multicomp
nent fluid mixture. Monte Carlo simulation revealed su
complicated phase diagrams even for a binary fluid mixt
composed of particles interacting with the attractive for
due to a square-well potential@5#.

Furthermore, complexity characterized by the extent
the density fluctuations can be found in a multicompon
fluid mixture. The diversity of dense regions for a constitue
can be regarded as a measurement of the complexity.
aspect is supported by the results of Monte Carlo simulati
@6#.

In the present work, percolation behavior concerni
dense regions of a constituent in a multicomponent fl
©2001 The American Physical Society01-1
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TETSUO KANEKO PHYSICAL REVIEW E 64 031201
mixture provides a measure for the development of den
fluctuations for a specific component.

A bond between thei and j particles in the multicompo-
nent fluid mixture is defined as a state satisfying the con
tion Ei j 1ui j (r )<0 @7#. An ensemble of particles linked b
such bonds is considered a physical cluster in the work
hand. In the above,Ei j andui j (r ) for a pair of i and j par-
ticles are the relative kinetic energy and pair potential,
spectively.

The attractive force between particles contributes to
formation of dense regions of particles in the fluid mixtu
Thus, a dominant fraction in particles distributed in a den
region should be occupied by particles constituting pa
formed by the attractive force. It is possible to consider e
dense region in the fluid mixture as an ensemble compo
of particles bound to each other by the attractive force. P
ticles constituting each pair should then satisfy the condit
Ei j 1ui j (r )<0. Therefore, the dense region is regarded
the physical cluster of particles linked by bonds defined
the conditionEi j 1ui j (r )<0.

In this paper, the mean size of the dense regions is e
mated as that of the physical clusters described above.
percolation relevant to the dense regions is regarded as
which concerns the physical clusters. An analytical estim
of the percolation follows from the solution of an integr
equation with a closure scheme. Requirements for the pe
lation threshold will be derived in Sec. V B. The percolati
thresholds evaluated for specific two-component fluids w
be given in Sec. VI.

In order to derive an analytical solution for the integr
equation, a practical expression for closure is required. T
expression will be obtained by estimating the behavior of
correlation functions at large distances. The expression f
multicomponent mixture will be given in Sec. III C. An ana
lytical solution for the integral equation will be presented
Sec. IV.

II. PAIR CONNECTEDNESS

In the present work, a bound state for thei and j particles
is defined as the state satisfying the conditionEi j 1ui j (r )
<0 for the sum of a pair potentialui j (r ) plus a relative
kinetic energyEi j . Particle pairs that can be composed
particles constituting a fluid mixture belong to a group
pairs characterized by a bound stateEi j 1ui j (r )<0 or the
other group of pairs characterized by an unbound stateEi j
1ui j (r ).0. Complicated phase behavior of the fluid mi
ture should be characterized by the former.

Then, the probabilitypi j (r ) that a pair ofi and j particles
satisfies the conditionEi j 1ui j (r )<0 should be considere
and is given as

pi j ~r !52p21/2E
0

2bui j
y1/2e2ydy, ~2.1!

where y is defined asy5(bEi j )
1/2 @7# and b as b[1/kT.

Here,k is Boltzmann’s constant andT is is the temperature
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If ui j is a repulsive potential, i.e.,bui j .0, the probability
should bepi j (r )50. In addition, the repulsive potential i
the present work is only the hard-core potential.

The factor exp(2buij) in the grand partition function can
be expressed as the sum of the contributions to the bo
state and the unbound state. Then, the pairwise bond p
ability pi j (r ) plays an important role as

e2bui j 5pi j ~r !e2bui j 1@12pi j ~r !#e2bui j . ~2.2!

If Eq. ~2.2! is substituted into the expression of the pair co
relation functiongi j (r ) described by the use of the gran
partition function, the contribution of the bound state
gi j (r ) can be separated from that of the unbound state.

Equation ~2.2! signifies that the Mayerf function f i j

5e2bui j 21 is the sum of a factorf i j
1 contributing to the

bound state and the other factorf i j* not contributing to the
bound state. Thus, Mayer’s mathematical clusters~diagrams
defined in terms off bonds! constitutinggi j can be expressed
as mathematical clusters consisting off i j

1 and f i j* due to the
relation f i j 5 f i j

11 f i j* . According to Eq.~2.2!, f i j
1 and f i j* are

given as

f i j
1[pi j ~r !e2bui j and f i j* [@12pi j ~r !#e2bui j 21.

A physical cluster consisting of particles bound to ea
other satisfying the conditionEi j 1ui j (r )<0, can be ex-
tracted from the mathematical clusters as a mathema
cluster including the product off i j

1 . As a result, the pair
correlation functiongi j (r ) can be separated into a correlatio
functionPi j (r ) for i -j particles belonging to the same phys
cal cluster and a correlation functionDi j for an i particle
belonging to a physical cluster and aj particle belonging to
another physical cluster.

The pair connectednessPi j (r ) is important to estimate the
mean size of physical clusters@8#. According to the above
the pair connectednessPi j (r ) can be related to the pair cor
relation functiongi j (r ) as

gi j 5Pi j 1Di j . ~2.3!

The pair connectednessPi j (r ) is defined as the probabil
ity r ir j Pi j (r )dr idr j that both thei particle in a volume ele-
mentdr i and thej particle in a volume elementdr j belong to
the same physical cluster. In the above,r i and r j are the
densities of thei and j particles for a uniform distribution,
respectively. The probability that thei particle indr i and the
j particle in dr j do not belong to the same cluster is e
pressed asr ir jDi j (r )dr idr j . Hence, the physical meaning
of Pi j andDi j require that

lim
r→`

Pi j 50 and lim
r→`

Di j 51,

since limr→`gi j 51. In addition, if a cluster has a fracta
structure then Pi j (r ), according to the feature o
r ir j Pi j (r )dr idr j , provides the characteristics of the fract
structure.

If each f i j
1 is defined in terms of anf 1 bond, thef 1 bond

corresponds to the pair of particles satisfying the condit
1-2
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ANALYTICAL ESTIMATE OF PERCOLATION FOR . . . PHYSICAL REVIEW E 64 031201
Ei j 1ui j (r )<0. Particles jointed byf 1 bonds form a physi-
cal cluster. If the physical cluster includesi and j particles,
the physical cluster includes the particles contributing to
diagram having at least one path of all thef 1 bonds between
the root pointsi and j, at which thei and j particles are
located. Such diagrams are those that contribute toPi j .

The collection of diagrams contributing toPi j can be
separated into the sum of two parts, namelyCi j

1 and Ni j
1 .

The partCi j
1 is the contribution of nonnodal diagrams havin

at least one path of allf 1-bonds betweeni and j. The part
Ni j

1 represents the contribution of nodal diagrams having
least one path of allf 1 bonds betweeni and j. Hence,Ni j

1

can be determined by the convolution integral of the prod
of Ci j

1 and Pi j . Thus, Pi j can be expressed by an integr
equation@8# as

Pi j 5Ci j
11 (

k51

L
rkE Cik

1Pk jdr k , ~2.4!

whereL is the number of constituents. This equation has
same mathematical structure as the Ornstein-Zernike e
tion.

III. CLOSURE SCHEME FOR SIMPLIFYING THE
MATHEMATICAL TREATMENT

A. Simple closure scheme for the integral equation

A closure scheme for Eq.~2.4! must be obtained to esti
matePi j .

The pair-correlation functiongi j
PY due to the Percus

Yevick ~PY! approximation can be expressed asgi j
PYebui j

511Ni j . Here, Ni j is the contribution of the nodal dia
grams forf bonds. If the relatione2bui j 5 f i j

11 f i j* 11 is con-
sidered, the above approximation is rewritten as

gi j
PY5 f i j

1~11Ni j
11Ni j* !1~ f i j* 11!Ni j

11~ f i j* 11!~11Ni j* !.

To obtain this equation, the relationNi j 5Ni j
11Ni j* must be

considered. The factorNi j* is due to all nodal diagrams tha
do not include paths of allf 1 bonds betweeni and j. The
terms in the above equation can be separated into those
stituting Pi j and those constitutingDi j by considering the
relationgi j 5Pi j 1Di j . Thus, the expressions correspondi
to Pi j andDi j can be determined from the separated terms

Pi j 5 f i j
1gi j

PYebui j 1~ f i j* 11!~Pi j 2Ci j
1! ~3.1a!

and

Di j 5~ f i j* 11!gi j
PYebui j 2~ f i j* 11!~Pi j 2Ci j

1!. ~3.1b!

To obtain these equations, the relationPi j 5Ci j
11Ni j

1 must
be considered.

By considering f i j
15pi j (r )e2bui j , e2bui j 5 f i j

11 f i j* 11,
and the PY approximationgi j

PY(12ebui j )5ci j
PY, Eqs. ~3.1a!

and ~3.1b! can be rewritten as
03120
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@12pi j ~r !#e2bui j

12@12pi j ~r !#e2bui j
Ci j

1

5
pi j ~r !ci j

PY

~12ebui j !$12@12pi j ~r !#e2bui j %
~3.2a!

and

Di j 52Pi j 1
ci j

PY

12ebui j
. ~3.2b!

Equation~3.2a! can be used as closure for Eq.~2.4! if ci j
PY is

given. Equations~3.2a! and~3.2b! are applicable when eithe
bui j ,0 or bui j .0, respectively.

In addition, Eq. ~3.2a! shows that the symmetryCi j
1

5Cji
1 is maintained due to the symmetryPi j 5Pji .

B. Behavior of Cij
¿ for 1™r

1. Behavior of Cij
¿ for buijË0 and 1™r

The closure scheme given by Eq.~3.2a! is not a practi-
cable way to solve Eq.~2.4! analytically.

Fortunately, Eq.~2.4! has the same mathematical structu
as the Ornstein-Zernike equation. The Ornstein-Zern
equation can be solved analytically for some fluids if t
mean spherical approximation~MSA! is used. In the MSA,
the direct correlation functionci j is given as the sum of the
short-range and long-range contributions. IfCi j

1 can also be
given as such a sum, the procedure for solving Eq.~2.4! can
be simplified, as is found in the procedures concerning
MSA.

The behavior ofCi j
1 at a great distance betweeni and j

can be readily determined.
When the distance betweeni and j is sufficiently large,

ubui j u should be small. Equation~2.1! can then be approxi-
mated as

pi j ~r !5
4

3Ap
~2bui j !

3/22
4

5Ap
~2bui j !

5/2

1
2

7Ap
~2bui j !

7/21•••. ~3.3!

The substitution of this approximation into Eq.~3.2a! results
in

Ci j
15

ci j
PY

2bui j
F 4

3Ap
~2bui j !

3/22
22

15Ap
~2bui j !

5/21•••G
1Pi j F2bui j 2

4

3Ap
~2bui j !

3/22
1

2
~2bui j !

2

1
32

15Ap
~2bui j !

5/21•••G . ~3.4!
1-3
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TETSUO KANEKO PHYSICAL REVIEW E 64 031201
If ci j
PY/(2bui j )51 for the MSA is substituted into this re

sult, Ci j
1 for 1!r can be written as

Ci j
1'4/~3Ap!~2bui j !

3/2. ~3.5!

To derive Eq. ~3.5! from Eq. ~3.4!, the condition
(2bui j )Pi j !4/(3Ap)(2bui j )

3/2 has been assumed for
!r .

The MSA results in the relation limr→`(gi j 21)/
(2bui j )5 1/2, since the PY approximation is given a
gi j

PY5ci j
PY/@12exp(buij)#. The conditionPi j /(gi j 21)<1 is

always satisfied, so thatPi j for 1!r should satisfy (gi j
21)/(2bui j )>Pi j /(2bui j ).Pi j /(2bui j )

1/2. Therefore,
the relation limr→`Pi j /(2bui j )

1/250 can be derived. Thus
the above assumption is validated.

2. Behavior of Pij for zbuij z™1 and 1™r

Using Eq.~3.3!, the expansion of Eq.~3.2a! in powers of
2bui j can be performed as

Pi j 52
ci j

PY

2bui j
F 4

3Ap
~2bui j !

1/21
16

9p
~2bui j !

1S 64

27p3/2
2

4

5Ap
D ~2bui j !

3/21•••G1
Ci j

1

2bui j

3F11
4

3Ap
~2bui j !

1/21S 1

2
1

16

9p D ~2bui j !1•••G .

~3.6!

If the approximation given by Eq.~3.5! and ci j
PY/(2bui j )

51 for the MSA are considered in Eq.~3.6!, the result can
be expressed as

Pi j 5
22

15Ap
~2bui j !

3/2 for ui j ,0. ~3.7!

If a physical cluster in a fluid mixture has a fractal structu
then Pi j (r ) given by Eq.~3.7! should represent the chara
teristics of the fractal structure.

C. Expression of a simple closure scheme

1. A closure scheme similar to the MSA

According to Eqs.~3.5!, a closure scheme similar to th
MSA can be obtained as

Ci j
15Ci j

011
4

3Ap
~2bui j !

3/2 for bui j ,0, ~3.8!

whereCi j
01 is the short-range contribution.

Ultimately, Eq. ~2.4! can be solved using the closu
scheme given as Eq.~3.8!.
03120
,

2. N-term potential

Mathematical difficulty cannot be avoided when applyi
the above-mentioned closure scheme to analytically so
Eq. ~2.4! because powers of the potential are included in
closure. To avoid this difficulty in the present work, it
assumed that the potentialui j is given as the sum ofN terms
where each term has the same feature as the Yukawa p
tial. It is anN-term potential given as

2bui j ~r !5 (
n51

N
wi j

(n)~r !, ~3.9a!

where

wi j
(n)[k0

(n)di
(n)dj

(n) exp~2znr !

r
for r>s i j .

~3.9b!

Here, an assumption for the coefficientszn should be pro-
vided as

0,z1<z2<•••<zN,`. ~3.9c!

This relation is useful, when efficient terms forr @1 should
be extracted from the power of theN-term potential.

The effective ranger i j
eff , of the attractive force between

particle i and a particlej due to theN-term potential can be
determined forn satisfying bothdi

(n)Þ0 anddj
(n)Þ0. If both

di
(n)Þ0 anddj

(n)Þ0 only for n5ns is satisfied, then the at
tractive force due to theN-term potential has the effectiv
ranger i j

eff5zns

21 .

If the effective range of the attractive force betweeni 8-j 8
particles is relatively wide, the probability that thei 8-j 8 par-
ticles fall into a bound stateEi 8 j 81ui 8 j 8(r )<0 should be
high enough. Thus, a pair of particles specified byn5nmin at
which zn is the minimum value in Eq.~3.9a! should effec-
tively contribute to the percolation due to the contact of m
croscopically dense regions.

TheN-term potential expressed by Eq.~3.9a! can be use-
ful to estimate the percolation in a multicomponent mixtu
composed of particles interacting with attractive forces h
ing various effective ranges.

3. Additional simplification of the closure scheme.

The substitution of Eq.~3.9a! into Eq. ~3.8! results in

Ci j
01~r !1

4

3Ap
$2bui j ~r !%3/2

5Ci j
01~r !1

4

3Ap
H (

n51

N
k0

(n)di
(n)dj

(n)exp~2znr !J 3/2
1

r 3/2
.

~3.10a!

In Eq. ~3.8!, the power (2bui j )
3/2 should be estimated a

that for r @1. If this fact and the relation 0,z1,zn8 (n8
52,3,•••) assumed by Eq.~3.9c! are considered, Eq.~3.10a!
should be rewritten as
1-4



in
n
on
ui
on
e

q

n-
th
u-

re

r

av

o

es

t, a

r
ce.

re-
of

t for

rt-

pa-

lt,

pi-

ANALYTICAL ESTIMATE OF PERCOLATION FOR . . . PHYSICAL REVIEW E 64 031201
Ci j
1~r !5Ci j

01~r !1
4

3Ap H ~k0
(1)di

(1)dj
(1)!3/2expS 2

3

2
z1r D 1

r 3/2

1
3

2
~k0

(1)di
(1)dj

(1)!1/2 (
n852

N
k0

(n8)di
(n8)dj

(n8)

3expS 2zn8r 2
1

2
z1r D 1

r 3/2J . ~3.10b!

The second term on the right-hand side of Eq.~3.10b! decays
within a longer range than the third term. Particles that
teract with the attractive force contributing to the seco
term can efficiently contribute to inducing the percolati
due to the contact of microscopically dense regions in a fl
mixture. Particles that interact with the attractive forces c
tributing to the third term cannot contribute efficiently to th
percolation.

In Eq. ~3.10b!, the effect of the factor (1/r )3/2 should be
approximately treated to obtain an analytical solution for E
~2.4!.

The decrease inCi j
1(r ) due to each term of the expone

tial function can be much more dominant than that due to
factor (1/r )3/2 as r increases. Considering this, the contrib
tion from the factor (1/r )3/2 can be approximated by 1/r in
Eq. ~3.10b!.

Another approximation can be given by requiring the
lation (1/r )3/25e2z8r /r for 0,r 2a!1. An approximate ex-
pression given by the requirement can be found as

1

r 3/2
5

e1/2

Aa

1

r
expF2

r

2aG .
In the present work, the maximum hard sphere diamete
particles distributed in the fluid mixture is applied asa.

Thus, Eq.~3.10b! can be approximated as

Ci j
1~r !5Ci j

01~r !1 (
n51

N
k̆0

nd̆i
nd̆j

n exp~2 z̆nr !

r
. ~3.11a!

The comparison between Eqs.~3.10b! and~3.11a! according
to Eq.~3.9c! shows that the coefficientsz̆n should satisfy the
relation given as

0, z̆1< z̆2< z̆3<•••. ~3.11b!

Hence, pair particles interacting with the attractive force h
ing the effective range characterized byz̆1 can most effi-
ciently contribute to the percolation due to the contact
microscopically dense regions in the fluid mixture.

Besides the relation given by Eq.~3.11b!, each coefficient
in Eq. ~3.11a! can be given as

z̆n5zn for f c51, ~3.12a!

z̆n5zn1
1

2
a21 for f c5e1/2, ~3.12b!
03120
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z1[
3

2
z1 , ~3.12c!

zn8[zn81
1

2
z1 ~n852,3, . . .!, ~3.12d!

k̆0
1d̆i

1d̆ j
15

4

3Ap

f c

Aa
~k0

(1)!3/2~di
(1)!3/2~dj

(1)!3/2, ~3.12e!

and

k̆0
n8d̆i

n8d̆ j
n85

2

Ap

f c

Aa
~k0

(1)!1/2k0
(n8)~di

(1)!1/2di
(n8)

3~dj
(1)!1/2dj

(n8) ~n852,3, . . .!.

~3.12f!

Thus, the closure given by Eq.~3.11a! is characterized by the
parameterf c . The effective ranges of the attractive forc
can be characterized byz̆n due to Eqs.~3.12a! and ~3.12b!.

In the above, the productk̆0
1d̆i

1d̆ j
1 is a factor characterizing

the strength of the long-range attractive force. In contras

product expressed ask̆0
n8d̆i

n8d̆ j
n8 can be regarded as a facto

characterizing the strength of a short-range attractive for
The approximation given by Eq.~3.11a! for f c51 some-

what overestimates the long-ranged contribution ofCi j
1(r ),

since the contribution of (1/r )3/2 is approximated as
(1/Aa)(1/r )

The alternative approximation given by Eq.~3.11a! for
f c5e1/2 somewhat overestimates the decay ofCi j

1(r ) depen-
dent onr, since the contribution of (1/r )3/2 is approximated
as (e1/2/Aa)(1/r )exp@2r/(2a)#.

According to a previous study on Yukawa fluids@10#,
overestimation of the long-range contribution ofCi j

1(r ) can

lead to an overestimation of 1/(k̆0
nd̆i

nd̆j
n) at the percolation

threshold. Fortunately, it is possible that the diagram rep
senting the percolation threshold for the overestimation
the long-range contribution has the same pattern as tha
the overestimation of the decay ofCi j

1(r ).
A hard-core potential resulting in a completely sho

range interaction betweeni th and j th particles does not di-
rectly contribute to the interaction between them when se
rated beyond a particular distances i j . By considering this
for Ci j

01 it is assumed that

Ci j
01~r !50, for r>s i j , ~3.13!

wheres i j is given ass i j 5
1
2

(s i1s j ) for the diameters i of

the hard core of particlei and the diameters j of the hard
core of particlej. If the short-range contributionCi j

01 can be
neglected forr>s i j , the mathematical treatment of Eq.~2.4!
is considerably simplified as it was in the MSA. As a resu
it is possible that the use of Eq.~3.11a! simplifies the esti-
mation of the percolation due to the contact of microsco
cally dense regions.
1-5
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IV. A SOLUTION OF THE INTEGRAL EQUATION

A. A solution including unknown coefficients

1. Using Baxter’s Q function

Baxter’s Q function @9# is useful to obtain a solution o
Eq. ~2.4! for either a single-component fluid of particles i
teracting via the Yukawa potential@10,11# or a multicompo-
nent fluid mixture. Equation~2.4! can be solved analytically
using Baxter’sQ function @9# with Eqs.~3.11a!–~3.13! given
for an L-component fluid mixture.

Based on the mathematical procedure for the Orst
Zernike equation@9,12#, Pi j (r ) and Ci j

1(r ) satisfying Eq.
~2.4! for the L-component fluid mixture are given by

2prPi j ~r !52
d

dr
Qi j ~r !12p(

k51

L
rkE

l jk

`

Qk j~ t !~r 2t !

3Pik~ ur 2tu!dt for l j i <r ,` ~4.1!

and

2prCi j
1~r !52

d

dr
Qi j ~r !1 (

k51

L
rkE

sup[lk j ,lki2r ]

`

Qjk~ t !

3
d

dr
Qik~r 1t !dt for l j i <r ,`, ~4.2!

wherel j i is defined using the hard-core diameterss i and
s j asl j i [

1
2 (s j2s i).

The functionQi j (r ) in Eqs.~4.1! and ~4.2! is introduced
as

Q̃i j ~k!5d i j 2~r ir j !
1/2E

l j i

`

eikrQi j ~r !dr, ~4.3!

whered i j 50 (iÞ j ) andd i i 51.
The short-range contribution toCi j

1(r ) is expressed in Eq
~3.13!. The characteristics of the short-range contribut
Ci j

01(r ) should be provided byQi j (r ), sinceQi j (r ) should
be related toCi j

1(r ) owing to Eq.~4.2!.
If the characteristics of the long-range contribution

Ci j
1(r ) are considered with the fact mentioned above,Qi j (r )

may have a form expressed as

Qi j ~r !5Qi j
0 ~r !1 (

n51

N
Di j

n e2 z̆nr ~l j i ,r ,s j i !,

~4.4a!

Qi j ~r !5 (
n51

N
Di j

n e2 z̆nr ~s j i <r !, ~4.4b!

and

Qi j
0 ~r !50 ~s j i <r !. ~4.4c!

In addition, the unknown coefficientsDi j given above must
be determined using Eqs.~4.1! and ~4.2!.
03120
-

n

The relationPi j 50 for l j i ,r ,s j i is derived from Eq.
~3.1a! by considering limui j →`gi j 50 and limd→0ui j (s i j

1d)5` (d.0). Owing to this feature ofPi j , the function
Qi j (r ) derived from Eq.~4.1! for urku!1 cannot include
powers ofr in the rangel j i ,r ,s j i . If this is considered
with the feature ofQi j

0 (r ) given in Eq.~4.4c! and the behav-
ior of Qi j (r ) expressed by Eq.~4.4a!, the functionQi j

0 (r )
should have a form expressed as

Qi j
0 ~r !5 (

n51

N F2Di j
n 12p(

k51

L
rk

z̆n

P̂ik~ z̆n!Dk j
n G

3~e2 z̆nr2e2 z̆ns i j ! ~l j i ,r ,s j i !, ~4.4d!

where

P̂ik~ z̆n![E
0

`

Pik~ t !e2 z̆nttdt. ~4.4e!

Owing to the relation given by Eq.~3.11b!, the quantities
P̂ik( z̆n) should satisfy the relation given as

P̂ik~ z̆1!> P̂ik~ z̆2!>•••~0, z̆1< z̆2<••• !. ~4.4f!

This means that the quantityP̂ik( z̆n) is small if the effective
range of the attractive force between pair particlesi andk is
short. The coefficientz̆n is given by Eqs.~3.12a! or ~3.12b!.
The reciprocal 1/z̆n characterizes the effective range of th
attractive force due to Eqs.~3.12c! and ~3.12d!.

Equation~4.4a! and the relationPi j 50 should be satisfied
over the rangel j i ,r ,s j i so that Eq.~4.1! for r ,s j i leads
to a relation given due to Eqs.~4.4b!, ~4.4c!, and~4.4d! as

(
n51

N
z̆nF2Di j

n 12p(
k51

L
rk

z̆n

P̂ik~ z̆n!Dk j
n Ge2 z̆nr1 (

n51

N
z̆nDi j

n e2 z̆nr

22p(
k51

L

(
n51

N
rkDk j

n e2 z̆nrE
0

`

Pik~ t !e2 z̆nttdt50. ~4.5!

If Eq. ~4.4b! is considered, then Eq.~4.2! leads to a rela-
tion expressed as

2prCi j
1~r !5 (

n51

N
z̆nDi j

n e2 z̆nr2 (
n51

N
z̆ne2 z̆nr (

k51

L
rkDik

n Q̂jk~ z̆n!

for s j i ,r , ~4.6!

where
1-6
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Q̂jk~s![E
lk j

`

Qjk~ t !e2stdt

5 (
m51

N H F2D jk
m12p(

l 51

L
r l

z̆m

P̂j l ~ z̆m!Dlk
mG

3e2slk je2 z̆msk jS ez̆ms j2e2ss j

s1 z̆m

2
12e2ss j

s D
1

1

s1 z̆m

D jk
me2 z̆mlk je2slk jJ . ~4.7!

Here, Eq.~4.7! can be derived from the use of Eqs.~4.4a!–
~4.4d!. The relation betweenP̂jk( z̆n) and Q̂jk( z̆n) can be
obtained from Eq.~4.7! as

Q̂jk~ z̆n!5e2 z̆nlk j (
m51

N H e2 z̆msk jD jk
mS e2 z̆ns j

z̆n1 z̆m

1
12e2 z̆ns j

z̆n
D

1(
l 51

L
2pr l

z̆m

P̂j l ~ z̆m!Dlk
mFe2 z̆mlk j

z̆n1 z̆m

2e2 z̆msk j

3S e2 z̆ns j

z̆n1 z̆m

1
12e2 z̆ns j

z̆n
D G J . ~4.8!

By considering Eqs.~4.4a! and ~4.4d!, Eq. ~4.1! for r
,s j i can be rewritten as

05 (
n51

N
z̆nF2Di j

n 12p(
k51

L
rk

z̆n

P̂ik~ z̆n!Dk j
n Ge2 z̆nr

1 (
n51

N
z̆nDi j

n e2 z̆nr12p(
k51

L
rkE

r

`

Qk j~ t !~r 2t !

3Pik~ ur 2tu!dt. ~4.9!

Equation~4.9! is equivalent to Eq.~4.5! that has no singu-
larity for 0,r ,`, so that Eq.~4.9! is satisfied for 0,r
,`. If the terms in Eq.~4.9! are then subtracted from term
in an equation representing Eq.~4.1! for s j i <r , a formula
can be derived as

2prPi j ~r !52 (
m51

N
z̆mF2Di j

m12p(
k51

L
rk

z̆m

P̂ik~ z̆m!Dk j
mGe2 z̆mr

12p(
k51

L
rkE

l jk

r

Qk j~ t !~r 2t !Pik~r 2t !dt.

~4.10!
03120
The Laplace transformation of Eq.~4.10! results in

2p P̂i j ~s!52 (
m51

N
z̆m

s1 z̆m

e2(s1 z̆m)s i j

3F2Di j
m12p(

k51

L
rk

z̆m

P̂ik~ z̆m!Dk j
mG

12p(
k51

L
rkP̂ik~s!Q̂k j~s!. ~4.11!

2. A formula for determining P̂ij „ z̆n… and Dij
n

By substituting Eq.~4.8! into Eq. ~4.11! for s5 z̆n , a for-
mula determining the relation betweenP̂i j ( z̆n) and Di j

n can
be obtained as

2p P̂i j ~ z̆n!5 (
m51

N
z̆m

z̆n1 z̆m

e2( z̆n1 z̆m)s i j

3FDi j
m22p(

k51

L
rk

z̆m

P̂ik~ z̆m!Dk j
mG

12p(
k51

L
rkP̂ik~ z̆n!e2 z̆nl jk

3 (
m51

N H e2 z̆ms jkDk j
mS e2 z̆nsk

z̆n1 z̆m

1
12e2 z̆nsk

z̆n
D

1(
l 51

L
2pr l

z̆m

P̂kl~ z̆m!Dl j
mFe2 z̆ml jk

z̆n1 z̆m

2e2 z̆ms jkS e2 z̆nsk

z̆n1 z̆m

1
12e2 z̆nsk

z̆n
D G J . ~4.12!

3. Another formula for determining P̂ij „ z̆n… and Dij
n

If Eq. ~3.13! is considered, then the substitution of E
~3.11a! into Eq. ~4.6! results in

2p k̆0
nd̆i

nd̆j
n5 z̆nDi j

n 2 (
k51

L
z̆nrkDik

n Q̂jk~ z̆n!. ~4.13!

By substituting Eq.~4.8! into Eq. ~4.13!, another formula to
determine the relation betweenP̂i j ( z̆n) and Di j

n can be ob-
tained as
1-7
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2p k̆0
nd̆i

nd̆j
n5 z̆nDi j

n 2 (
m51

N

(
k51

L
rkDik

n D jk
me2 z̆nlk j

3e2 z̆msk j
z̆n1 z̆m2 z̆me2 z̆ns j

z̆n1 z̆m

2 (
m51

N

(
k51

L

(
l 51

L
rkDik

n Dlk
m 2pr l

z̆m

P̂j l ~ z̆m!e2 z̆nlk j

3e2 z̆msk j
2 z̆n2 z̆m1 z̆me2 z̆ns j1 z̆nez̆ms j

z̆n1 z̆m

.

~4.14!

B. Formulas for unknown coefficients

1. Coefficients specified for theN-term potential

Each coefficient expressed asDi j
n on the right-hand side

of Eq. ~4.12! has the suffixj, although it does not belong t
the coefficientsP̂i j ( z̆n). The suffixesi found on the right-
hand side of Eq.~4.14! belong to the coefficientsDi j

n . The
term on the left-hand side of Eq.~4.14! is a product given by
2p k̆0

nd̆i
nd̆j

n . These facts indicate that a coefficientDi j
n can be

divided into a factor having the suffixi and the other factors
having suffixesj. Thus, it is assumed that the coefficientDi j

n

is given as

Di j
n 52d̆i

naj
nexp~ z̆ns j /2!, ~4.15a!

whereaj
n is an unknown coefficient.

The expression of Eq.~4.12! can be simplified by the us
of a coefficientPj

n defined as

Pj
n[12(

l 51

L
f l

d̆l
n

s l

P̂l j ~ z̆n!

s l
2

, ~4.15b!

wheref l is the volume fraction defined as

f l[
p

6
r ls l

3 . ~4.15c!

The coefficientPj
n defined by Eq.~4.15b! must always be

positive, sinced̆ j
n/s j should be positive for arbitary values o

j and n. According to Eq.~4.4f!, this coefficient should be
small if the effective range characterized by 1/z̆n is short.

The use of the coefficientPj
n and the volume fractionf l

simplifies Eq.~4.12! as

2Pj
n5 (

m51

N
xj

nxnm
aj

m

s j
, ~4.16a!

where

xj
n[

6

p
z̆ns je

2 z̆ns j /2 ~4.16b!
03120
and

xnm[(
l 51

L
ez̆ns l /2e2 z̆ms l /2

z̆ns l~ z̆n1 z̆m!s l
F z̆ns le

2 z̆ns l
d̆l

n

s l
S d̆l

m

s l
2

1

z̆ms l

Pl
mD

1Pl
nS d̆l

m

s l
Yll

mn1Pl
mZll

mnD Gf l , ~4.16c!

with

Yjl
mn[

1

z̆ns l

@~ z̆n1 z̆m!s l2 z̆ms le
2 z̆ns j # ~4.16d!

and

Zjl
mn[

1

z̆ms j z̆ns l

@ z̆ns le
z̆ms j2~ z̆n1 z̆m!s l1 z̆ms le

2 z̆ns j #.

~4.16e!

Moreover, the use of the coefficientPj
n and the volume

fraction f l simplifies Eq.~4.14! as

2p
k̆0

z̆n

d̆j
n

s j
e2 z̆ns j /2

52
aj

n

s j
2

6

p (
m51

N

(
l 51

L
f l

al
n

s l

al
m

s l

e2 z̆ms j /2

~ z̆n1 z̆m!s l

3F d̆ j
m

s j
Yjl

mn1Pj
mZjl

mnG . ~4.17!

2. Coefficients specified for the two-terms potential

The potential composed of two terms, i.e., Eq.~3.9a! for
N52, is remarkable. If particles interacting with an attra
tive force contributing only within a short range constitute
fluid mixture with particles interacting with an attractiv
force contributing over a long range, then Eq.~3.9a! at least
for N52 must be used to describe the features of th
forces. Besides this, the coefficientsaj /s j for N52 can be
readily obtained from Eq.~4.16a! as

aj
n

s j
52

1

x (
m51

2

Xj
nmPj

m, ~4.18a!

where

S Xj
11 Xj

12

Xj
21 Xj

22D[S 1

xj
1 x22 2

1

xj
2 x12

2
1

xj
1 x21

1

xj
2x11 D , ~4.18b!

and

x[x11x222x12x21. ~4.18c!

The substitution of Eq.~4.18a! into Eq. ~4.17! results in
1-8
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2pe2 z̆ns j /2
k̆0

n

z̆n

d̆j
n

s j
x22x(

r 51

2

Xj
nrPj

r

1
6

p (
m51

2

(
r 51

2

(
s51

2

(
l 51

L Ff lXl
nrXl

msPl
r Pl

s e2 z̆ms j /2

~ z̆n1 z̆m!s l

3S d̆ j
m

s j
Yjl

mn1Pj
mZjl

mnD G50 ~4.19!

V. MEAN SIZE OF PHYSICAL CLUSTERS

A. Cluster size

The equilibrium numbernn of physical clusters consistin
of n particles can be related to the pair connectednessPi j ,
according to the formula given by Coniglio, De Angelis, a
Forlani @8#, as

(
2<n

n~n21!nn5(
i 51

L

(
j 51

L
r ir jE

V
E

V
Pi j ~r i ,r j !dr idr j .

~5.1!

If the probability p( i ) that particlei exists in a cluster is
independent ofn, then the factor(nnnn included in Eq.~5.1!
can be related to the densityr i of the i particles in the vol-
umeV as

r i5
1

V
p~ i !(

n
nnn . ~5.2!

The mean physical cluster sizeS is given by S
5((nn2nn)/((nnnn), so that the substitution of Eqs.~5.1!
and ~5.2! into this formula results in

S511S (
k51

L
rkD 21

(
i 51

L

(
j 51

L
r ir jE Pi j ~r !dr . ~5.3!

According to Appendix A, the mean physical cluster si
S given by Eq.~5.3! is estimated as

S5(
i 51

L F (
j 51

L H (
k51

L
fk

f i
S s i

sk
D 3J 21/2

Q̃i j
21~0!G2

. ~5.4a!

Therefore, the mean physical cluster size diverges to infi
if Q̃i j

21(0) reaches infinity. The percolation due to the co
tact of microscopically dense regions of particles can be g
erated under a condition satisfyingQ̃i j

21(0)5`.
According to the comparison between Eqs.~4.3! and

~4.7!, the relation betweenQ̃i j (0) andQ̂i j (0) is given as

Q̃i j ~0!5d i j 2
6

p S f i

s i
3

f j

s j
3D 1/2

Q̂i j ~0!. ~5.4b!

If Eq. ~4.7! for s50 is used with Eqs.~4.15a!–~4.15c!, an
expression forQ̂i j (0) can be derived as
03120
ty
-
n-

6

p S f i

s i
3

f j

s j
3D 1/2

Q̂i j ~0!5 (
m51

N S 6

p
f is i D 1/2

Qi
mS 6

p
f j

1

s j
D 1/2aj

m

s j
,

~5.4c!

where

Qi
m[

e2 z̆ms i /2

z̆ms i
F2

ezms i212 z̆ms i

z̆ms i

Pi
m2

d̆i
m

s i
~ z̆ms i11!G .

~5.4d!

Thus, the coefficientQ̃i j
21(0) in Eq. ~5.4a! can be estimated

B. Percolation atLÄ2

1. A two-component mixture (LÄ2,NÄN)

The inverseQ̃i j
21(0) can be readily estimated for a two

component mixture system composed of particles interac
with attractive forces that can be described by theN-term
potential. Thus, the use of Eq.~5.4b! results inQ̃i j

21(0) ex-
pressed as

S Q̃11
21~0! Q̃12

21~0!

Q̃21
21~0! Q̃22

21~0!D
5@zndetuQ̃i j ~0!u#21

3znS 12
6

p

f2

s2
3Q̂22~0!

6

p Ff1

s1
3

f2

s2
3G1/2

Q̂12~0!

6

p Ff2

s2
3

f1

s1
3G1/2

Q̂21~0! 12
6

p

f1

s1
3Q̂11~0! D ,

~5.5a!

where

detuQ̃i j ~0!u[12
6

p

f1

s1
3Q̂11~0!2

6

p

f2

s2
3Q̂22~0!

1S 6

p D 2f1

s1
3

f2

s2
3Q̂11~0!Q̂22~0!

2S 6

p D 2 f1

s1
3

f2

s2
3Q̂12~0!Q̂21~0!. ~5.5b!

If detuQ̃i j (0)u reaches zero under a certain condition th
Q̃i j

21(0) diverges to infinity. Simultaneously, the mea
physical cluster sizeS given by Eq.~5.4a! diverges to infin-
ity. Therefore, the percolation threshold relevant to the p
colation behavior of physical clusters should be estimated
a particular state satisfying the following relation:

detuQ̃i j ~0!u50. ~5.6!
1-9
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2. A fluid system specified byLÄ2 andNÄ2

The percolation threshold can be readily estimated fo
two-component mixture system (L52) composed of par-
ticles interacting with attractive forces due to the two-te
potential (N52).

Equation~5.6! and the substitution of Eq.~5.4c! into Eq.
~5.5b! lead to

x1
6

p (
l 51

2

f lFQl
1S x22

xl
1

Pl
12

x12

xl
2

Pl
2D

1Ql
2S 2

x21

xl
1

Pl
11

x11

xl
2

Pl
2D G

1S 6

p D 2

f1f2~Q1
1Q2

22Q1
2Q2

1!

3S 1

x1
1x2

2 P1
1P2

22
1

x2
1x1

2 P1
2P2

1D 50. ~5.7!

Here, Eqs.~4.18a!–~4.18c! must be considered to derive E
~5.7!. Thus, the percolation threshold for the two-compon
mixture is given as a particular state satisfying Eq.~5.7!.

In addition, it is possible that one of the attractive forc
dominantly contributes to the generation of the percolation
the two-component mixture. Then, the other attractive for
also should contribute to the percolation threshold. Equa
~5.7! can be used to estimate their contribution to the per
lation threshold.

VI. SPECIFIC FLUIDS

A. Formulas for evaluating the percolation threshold

1. A specific fluid

To evaluate the percolation threshold for a fluid mixtu
composed of particles interacting with attractive forces d
to the two-term potential (N52), all the coefficients ex-
pressed asPj

n in Eq. ~4.19! must be evaluated. Their evalu
ation can be simplified for a specific two-component flu
mixture. This fluid mixture is specified as

s15s25s, z̆15 z̆, 0, z̆s, z̆2s, ‘ z̆2s@1,
~6.1a!

d̆1
1

s1
5

d̆

s
, 0<

d̆2
1

s2
!1,

d̆1
2

s1
5

d̆2
2

s2
5

d

s
, 0<

d

s
,

~6.1b!

k̆0
15 k̆, and 0< k̆0

2!1. ~6.1c!

In the fluid mixture characterized by Eq.~6.1a!, the attractive
force interacting betweeni 51 and j 51 particles decays
much more slowly than the attractive forces interacting
tween dissimilar particles (i 51,j 52) particles and betwee
i 52 and j 52 particles. Furthermore, the attractive forc
interacting betweeni 51 and j 52 particles and betweeni
52 and j 52 particles are extremely weaker than the for
03120
a

t

s
n
s
n
-

e

-

betweeni 51 and j 51 particles. The fluid mixture can b
regarded as that in which hard-core spheres interacting
the attractive force are mixed with hard-core spheres in
absence of attractive forces.

2. Formulas for evaluating the coefficients Pj
n

The coefficientP1
1 can be estimated using an equati

derived from Eq.~4.19! for j 51 and n51. According to
Appendix B 1@Eq. ~B11c!#, the coefficientP1

1 satisfying the
relations given by Eqs.~6.1a!–~6.1c! should be evaluated
using a formula given as

12e2 z̆s
k̆

z̆

d̆

s
f1F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s
~12e2 z̆s!P1

1

1
1

2
~ez̆s221e2 z̆s!~P1

1!2G 2

2F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s

3~12e2 z̆s!P1
11

1

2
~ez̆s221e2 z̆s!~P1

1!2G
3P1

11
~P1

1!2

2~ z̆s!2 F ~ez̆s221e2 z̆s!P1
11 z̆s

d̆

s
~22e2 z̆s!G

50. ~6.2a!

Equation~6.2a! is derived forf2Þ0. It does not, however
include f2, since terms withP2

1 are ignored owing to 0

,P2
1!1 for 0,d̆2

1/s!1. Therefore,P1
1 is independent of

f2.
The other coefficientsPj

n , according to Appendix B 1, are
given as

P1
2'0, P2

2'0. ~6.2b!

3. The percolation threshold

The percolation threshold for the fluid mixture charact
ized by Eqs.~6.1a!–~6.1c! is determined by applying the
relation expressed by Eq.~5.7!. According to Appendix B 2
@Eq. ~B14b!#, the magnitude ofP1

1 at the percolation thresh
old can be found as

P1
15 z̆s

d̆

s
@~ z̆s!2~ez̆s221e2 z̆s!22ez̆s12z̆s12#21

3$z̆s1e2 z̆s2@$12~ z̆s!2%~e2 z̆s22!e2 z̆s12#1/2%.

~6.3!

Equation~6.3! is derived forf2Þ0. It does not, however
include f2, since terms withP2

1 are ignored owing to 0

,P2
1!1 for 0,d̆2

1/s!1. Therefore, the percolation thresh
old determined by Eqs.~6.2a! and~6.3! is independent off2.
1-10
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4. The pair connectedness Pij (s i j )

The behavior of the pair connectednessPi j (r ) can be
readily estimated at the particular distancer 5s i j where the
hard spheres of ani particle and aj particle contact each
other. According to Appendix C@Eq. ~C4a!#, the pair
connectednessP11(s) for i 51 and j 51 particles in the
fluid mixture characterized by Eqs.~6.1a!–~6.1c! can be
found as

P11~s!5
z̆s

12 S d̆

s
2

1

z̆s
P1

1D P1
1

f1
F1

2
S d̆

s
D 2

e2 z̆s1
1

z̆s

d̆

s

3~12e2 z̆s!P1
11

1

2
~ez̆s221e2 z̆s!~P1

1!2G21

.

~6.4a!

Equation~6.4a! is derived forf2Þ0. It does not, however
include f2, since terms withP2

1 are ignored owing to 0

,P2
1!1 for 0,d̆2

1/s!1. Therefore,P11(s) is independent
of f2.

The other pair connectednessPi j (s) for i -j particles in
the fluid characterized by Eqs.~6.1a!–~6.1c! can be found as

P12~s!5P21~s!5P22~s!50. ~6.4b!

B. Evaluation of the percolation threshold

1. Coefficients determined from Eqs. (6.2a) and (6.3)

The percolation threshold can be evaluated using E
~6.2a! and ~6.3!.

Coefficients,f1 and P1
1, satisfying either Eqs.~6.2a! or

~6.3! are expressed as (f1)p @(f1)p.0# and
(P1

1)p @(P1
1)p.0#. Then, the coefficients (f1)p and (P1

1)p

represent the values off1 and P1
1 at the percolation thresh

old.
Similarly, quantities and coefficients given at the perco

tion threshold are expressed as those having the suffixp.
An increase in the effective range 1/z5(3/2)(z̆2 ln fc)

21

( f c51, e1/2) of the attractive force due to a decrease
z̆s should raise the probability that the bound sta
Ei j 1ui j (r )<0 (i 51, j 51) is satisfied, since the increas
in the effective range can allow the strong attractive fo
to interact over large distances between two partic
Thus, the increase in the effective range should resul
an increase in the value of„Pi j (s)…p which relates to the
probability that ani particle is bound near aj particle. The
value of „Pi j (s)…p should be large, if the attractive forc
betweeni and j particles is strong and its effective range
long.

On the other hand, a decrease in the magnitude
K0

(1)d2/s varying as the strength of the attractive for
should cause a decrease in the value ofP11(s). The negative
contribution of a decrease inK0

(1)d2/s to P11(s) can,
03120
s.

-

e
s.
in

of

however, be balanced with the positive contribution of
decrease inz̆s. Figure 1 demonstrates that the former a
the latter are balanced at the peak of each curve given u
the condition that (k̆/ z̆)(d̆/s)2 @54(3Ap)21f c(K0

(1)d2/
s)3/2( z̆s)21 ( f c51, e1/2)] is constant. If z̆s is small
enough, the value ofP11(s) can sensitively depend on th
magnitude ofK0

(1)d2/s.
If the probability that a 1-particle is bound near anoth

1-particle is high in the mixture system, then, the pair co
nectedness„P11(s)…p for the mixture system should be larg
Therefore, it is possible that the macroscopic homogeneit
the mixture system will become unstable, if„P11(s)…p is
extremely large. If the mixture system is characterized b
strong attractive force having a long effective range,
should be readily macroscopically separated into
1-particle rich phase and the 2-particle rich phase. Ifi and j
particles interact with the most strongly attractive force ha
ing the largest value of the effective ranges in a fluid m
ture, the value of„Pi j (r )…p can be large. These particles ca
contribute to making the phase behavior of the fluid mixtu
complicated.

FIG. 1. The pair connectedness„P11(s)…p for the two-
component mixture fluids characterized by Eqs.~6.1a!–~6.1c! and

k̆/ z̆510. To evaluate„P11(s)…p , Eq. ~6.4a! is used with Eqs.~6.2a!
and ~6.3!. The values of„P11(s)…p should be considered as thos
evaluated forf2 having an arbitrary value different from zero
Here, f2 is the volume fraction ofi , j 52 particles. Each curve

represents a percolation threshold. In addition,z̆s, P11(s), and

( k̆/ z̆)(d̆/s)2 are dimensionless. The factorz̆s varies as the inverse
of the effective range of the attractive force betweeni , j 51 par-

ticles. The factor (k̆/ z̆)(d̆/s)2 varies as the strength of the attractiv
force betweeni , j 51 particles.
1-11
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For the weakly attractive force, percolation can be gen
ated if (f1)p takes on a large value. According to Fig. 2, t
value of (f1)p is larger for @( k̆/ z̆)(d̆/s)2#p52.5 than that
for another. Then,„P11(s)…p is small, as known from Fig. 1
In addition, the factor@( k̆/ z̆)(d̆/s)2#p is a parameter depend
ing on the strength of the attractive force and is dimensi
less.

The strongly attractive force as given by@( k̆/ z̆)(d̆/s)2#p
550 should allow (f1)p to remain sufficiently small, i.e.
should induce percolation even for the low volume fractio
As known from Fig. 2, the value of (f1)p remains small for

@( k̆/ z̆)(d̆/s)2#p550. Figure 1, however, shows tha
„P11(s)…p for the strongly attractive force is large. Thus, t
strength of the attractive force plays an important role
generating a nonuniform distribution.

2. The relation between (f1)p and [1Õ(K0
(1)d2Õs)]p

The factorK0
(1)d2/s can be regarded as a dimensionle

parameter representing the strength of the attractive fo
Percolation thresholds can be evaluated for a particular v
of zs as the relation between (f1)p and @1/(K0

(1)d2/s)#p .
For this purpose, the factorK0

(1)d2/s must be related to the

factor (k̆/ z̆)(d̆/s)2.
The curved lines shown in Fig. 3 are the percolati

thresholds.
By considering Eqs.~6.1a!, ~6.1b!, and ~6.1c!, it follows

FIG. 2. Volume fraction (f1)p in the two-component mixture

fluids characterized by Eqs.~6.1a!–~6.1c! and k̆/ z̆510. The values
of (f1)p should be considered as those evaluated forf2 having an
arbitrary value different from zero. Percolation takes place un
the condition characterized by a point belonging to the upper reg
of each curve. In addition,f1 is the dimensionless volume fractio
of i , j 51 particles.
03120
r-

-

.

r

s
e.
ue

that the relation betweenK0
(1)d2/s and (k̆/ z̆)(d̆/s)2 is de-

rived from Eqs.~3.12e! and ~3.12f! as

d1
(1)5dÞ0, k0

(1)Þ0, di
(n8)50, k0

(n8)50

~ i 51,2, . . . , n852,3, . . .!. ~6.5a!

The coefficientk0
(1) determined by Eqs.~3.12e! and ~6.1c!

for s̆5s is given as

S k0
(1)d2

s D 21

5S 3Ap

4

1

f c
z̆s D 22/3F k̆

z̆
S d̆

s
D 2G22/3

. ~6.5b!

r
n

FIG. 3. Percolation thresholds for the two-component mixtu

fluids characterized by Eqs.~6.1a!–~6.1c! and k̆/ z̆510. The values
of @1/(k0

(1)d2/s)#p should be considered as those evaluated forf2

having an arbitrary value different from zero. Percolation tak
place under the condition characterized by a point belonging to
lower region of each curve. In addition, 1/(k0

(1)d2/s) is dimension-
less. Here, 1/k0

(1) takes a value proportional to the temperature b
cause of Eqs.~3.9a! and ~3.9b!. The factork0

(1)d2/s varies as the
strength of the attractive force betweeni , j 51 particles.
1-12
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Thus, the factor@1/(K0
(1)d2/s)#p is evaluated, if the factors

( z̆s)p and @( k̆/ z̆)(d̆/s)2#p are determined with (f1)p using
Eqs.~6.2a! and ~6.3!.

In addition, the effective range 1/z of the attractive force
is related toz̆s, since a relation betweenzs andz̆s is given
for f c51 by Eq.~3.12a! and the other relation forf c5e1/2 by
Eq. ~3.12b!.

As illustrated in Fig. 3, percolation thresholds depend
the decay closure expressed by Eq.~3.11a!. The decay of
closure depends onr as

1

As

1

r
expS 2

3

2
zrD for f c51

and

e1/2

As

1

r
expS 2

1

2s
r DexpS 2

3

2
zrD for f c5e1/2.

The approximation given forf c51 somewhat overestimate
the long-ranged contribution ofCi j

1(r ), since the contribu-
tion of (1/r )3/2 is approximated as (1/As)(1/r ). The alter-
native approximation given for f c5e1/2 somewhat
overestimates the decay of ther-dependent Ci j

1(r ),
since the contribution of (1/r )3/2 is approximated as
(e1/2/As)(1/r )exp@2r/(2s)#.

Overestimation of the long-range contribution
Ci j

1(r ) ( f c51) can lead to an overestimation o
@1/(k0

(1)d2/s)#p as follows from the thick solid lines in Fig
3. Fortunately, the diagrams representing the percola
thresholds for the overestimation of the long-range contri
tion have the same pattern as those for the overestimatio
the decay ofCi j

1(r ) ( f c5e1/2). This behavior is similar to
that found for the single-component fluid@10#.

3. The addition of i , jÄ2 particles into the fluid mixture

Percolation can be generated throughi , j 51 particles in-
teracting with the attractive force characterized by E
~6.1a!-~6.1c!. A nonuniform distribution ofi , j 51 particles
should be formed through the attractive force in the flu
mixture. Then,i , j 52 particles in the absence of an attracti
force should distribute in rare regions ofi , j 51 particles. It
should be considered thati , j 52 particles can hardly distrib
ute in dense regions ofi , j 51 particles, since there is n
attractive force between ai , j 51 particle and ai , j 52 par-
ticle. Hence, ifi , j 52 particles are added into the fluid mix
ture, they should occupy the rare regions ofi , j 51 particles
more easily than the dense regions ofi , j 51 particles. This
means that the percolation can hardly be affected by the
dition of thei , j 52 particles. This interpretation can be dem
onstrated only if Eqs.~6.2a!, ~6.3!, and ~6.4a! are indepen-
dent off2. It suggests that the viscosity of the fluid will no
be simply reduced by addingi , j 51 particles.
03120
n

n
-
of

.

d-

Furthermore, it is predicted that clusters ofi , j 51 par-
ticles in a fluid containingi , j 52 particles will be less flex-
ible than those in a fluid withouti , j 52 particles, sincei , j
52 particles occupy rare regions ofi , j 51 particles. Such an
effect should contribute to hydrodynamical transport ph
nomena found for a fluid mixture including particles such
i , j 52 particles. Thus, it is expected that a phenomen
similar to this can contribute to the viscosity anomaly f
binary mixtures near the consolute point.

The attractive force betweeni , j 52 particles cannot be
ignored, so thati , j 52 particles in the dense regions ofi , j
52 particles can hardly satisfy the conditionEi j 1ui j (r )
<0. The addition ofi , j 52 particles causes dense regions
i , j 52 particles to develop only passively. Thus, the addit
can lead to a phase separation into the phase rich ini , j 51
particles and the phase rich ini , j 52 particles.

In a multicomponent fluid mixture, the attractive forc
between a particle of constituentLs and a particle of the
other constituentsL s

c is much weaker than the attractiv
force betweenLs particles. Moreover, the attractive forc
betweenL s

c particles is relatively weak. According to th
above discussion, dense regions ofL s

c particles should form
passively, if dense regions ofLs particles are developed in
the multicomponent fluid mixture. Then, it is expected th
the percolation due to constituentLs can hardly be affected
by the volume fractions ofL s

c particles.
The growth of a dense region of constituentLs can result

from the contact of small dense regions. This growth proc
can be similar to that known as cluster-cluster aggregat
The distribution of particles resulting from cluster-cluster a
gregation leads to a fractal structure, while the dimensiondf
of the fractal structure was determined asdf;1.75 @13#. If
the effective range of the attractive force is sufficiently larg
the dense regions can develop a structure having a fra
dimension 1.5, according to Eq.~3.7! and the previous study
@10#. It follows that this structure also is little affected by th
addition of L s

c particles, since the addedL s
c particles are

essentially excluded from the dense regions ofLs particles.
Notwithstanding the quite different model from that in th
present work, it has been demonstrated that the fracta
mensions found from the clusters aggregated in the bin
mixtures can be insensitive to molar fraction within the ran
of high molar fraction@14#.

VII. CONCLUSIONS

The dominant particles distributed in a dense region o
particular constituent (Ls) in a multicomponent fluid mixture
can be defined as particles constituting pairs that should
isfy the condition Ei j 1ui j (r )<0. It is assumed that the
dense region corresponds to an ensemble of particles bo
to each other by an attractive force. In the present work,
dense region is a cluster that can contribute to the perc
tion.

When both the attractive force between a particle o
constituentLs and a particle of the other constituentsL s

c ,
and the attractive force betweenL s

c particles are much
weaker than the attractive force betweenLs particles in a
1-13
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multicomponent mixture,L s
c particles should for the mos

part be excluded from the dense regions ofLs particles. As a
result,L s

c particles are favored to be found in rare regions
Ls particles. Dense regions composed ofL s

c particles should
be formed passively in the fluid mixture. Thus, the perco
tion generated byLs particles should hardly be affected b
the volume fractions ofL s

c particles.
If L s

c particles are added into the fluid mixture, these p
ticles should migrate into the rare regions ofLs particles
more easily than the dense regions ofLs particles. Then, the
rare regions ofLs particles can fill up with the addedL s

c

particles. Thus, it is possible that the clusters ofLs particles
in the fluid includingL s

c particles are less flexible than thos
in the fluid withoutL s

c particles. Such a phenomenon c
contribute to the viscosity anomaly near the consolute p
for a multicomponent mixture.

If the probability is high that ani particle is located near a
j particle, then the value ofPi j (s i j ) is large. If i - j particles
interact with the most strongly attractive force having t
largest value of the effective ranges in a fluid mixture s
tem, the magnitude ofPi j (s i j ) can be maximized. Accord
ingly, these particles can contribute to making phase beh
ior of the fluid mixture complicated.

The solution of the integral equation for the pair conne
edness function requires a closure scheme. The expres
for closure specified byf c51 results in the overestimation o
the long-range contribution ofCi j

1(r ). The expression for
closure specified byf c5e1/2 somewhat overestimates the d
cay ofCi j

1(r ), which depends onr. The overestimation of the
long-range contribution ofCi j

1(r ) can lead to an overestima
tion of „1/(k0

(1)d2/s)…p at the percolation threshold. Fortu
nately, the diagrams representing the percolation thresh
for the overestimation of the long-range contribution ha
the same pattern as those for the overestimation of the d
of Ci j

1(r ).
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APPENDIX A: MEAN PHYSICAL CLUSTERS SIZE S

The Fourier transform of Eq.~2.4! is given as

(
k51

L
@d ik1~r irk!

1/2P̃ik~k!#@dk j2~rkr j !
1/2C̃k j~k!#

5d i j for uku5k, ~A1!

where

P̃i j ~k![E Pi j ~r !eik•rdr , C̃i j ~k![E Ci j ~r !eik•rdr ,

The relation betweenC̃i j (k) andQ̃ik(k) is given as
03120
f

-

-

t

-

v-

-
ion

ds
e
ay

d i j 2~r ir j !
1/2C̃i j ~k!5 (

k51

L
Q̃ik~k!Q̃jk~2k!,

so that Eq.~A1! results in

d i j 1~r ir j !
1/2P̃i j ~k!5 (

k51

L
Q̃ki

21~2k!Q̃k j
21~k!. ~A2!

From Eq.~A2!, a relation is obtained as

(
k51

L
Q̃ki

21~0!Q̃k j
21~0!5d i j 1~r ir j !

1/2E Pi j ~r !dr . ~A3!

Therefore, the substitution of Eq.~A3! into Eq. ~5.3! results
in

S5(
i 51

L F (
j 51

L H (
k51

L
fk

f i
S s i

sk
D 3J 21/2

Q̃i j
21~0!G2

. ~A4!

APPENDIX B: FORMULAS FOR SPECIFIC FLUIDS

1. Formulas for evaluating coefficientsPj
n

For the relations expressed by Eq.~6.1a!, each coefficient
given by Eq.~4.16b! is represented as

x1
15x2

15
6

p
z̆se2 z̆s/2, ~B1a!

x1
25x2

25
6

p
z̆2se2 z̆2s/2. ~B1b!

Each coefficient given by Eq.~4.16c! is represented for the
relations expressed by Eqs.~6.1a! and ~6.1b! as

x11'
1

z̆s
F1

2
S d̆

s
D 2

e2 z̆sf11
1

z̆s

d̆

s
~12e2 z̆s!P1

1f1

1
1

2
~ez̆s221e2 z̆s!~P1

1P1
1f11P2

1P2
1f2!G ,

~B2a!
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x12'P1
2ez̆2s/2

ez̆s/2

z̆s~11 z̆/ z̆2!
H F 1

z̆2s
S z̆se2 z̆s

d̆

s
f11P1

1f1

1P2
1f2D 1

12e2 z̆s

z̆s
~P1

1f11P2
1f2!G

3
d

s
R1S P1

1f11P2
1

P2
2

P1
2 f2D 1

~ z̆2s!2J , ~B2b!

x21'P1
2 ez̆2s/2

z̆2s

e2 z̆s/2

11 z̆/ z̆2
H F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G

3
d

s
R1

1

z̆2s

d̆

s
f11

z̆s

~ z̆2s!2

d̆

s
f11

1

z̆2s

ez̆s21

z̆s

3S P1
1f11P2

1
P2

2

P1
2 f2D 2

1

~ z̆2s!2 S P1
1f11P2

1
P2

2

P1
2f2D J ,

~B2c!
n

fro
.

03120
x22'
1

2
P1

2P1
2 ez̆2s

z̆2s
H d

s
RF d

s
R~f11f2!

1
2

z̆2s
S f11

P2
2

P1
2 f2D G1Ff11S P2

2

P1
2D 2

f2G J .

~B2d!

In Eqs.~B2b!–~B2d!, R is defined as

R[
e2 z̆2s

P1
2

. ~B2e!

The coefficientx given by Eq.~4.18c! is represented for
the relations expressed by Eqs.~6.1a! and ~6.1b! as
2z̆2se2 z̆2s
x

P1
2P1

2z̆s'S d

s D 2

R2~f11f2!z̆sx111Ff11S P2
2

P1
2D 2

f2G z̆sx1122S d

s D 2

R2
12e2 z̆s

z̆s
~P1

1f11P2
1f2!

3F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G1

2

z̆2s

d

s
RS f11

P2
2

P1
2 f2D z̆sx111

4

z̆2s
S d

s D 2

3R2~12e2 z̆s!~P1
1f11P2

1f2!F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G2

2

z̆2s

d

s
R

12e2 z̆s

z̆s
~P1

1f11P2
1f2!

3F d̆

s
f11

ez̆s21

z̆s
S P1

1f11P2
1

P2
2

P1
2 f2D G2

2

z̆2s
S d

s D 2

R2F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G

3S z̆se2 z̆s
d̆

s
f11P1

1f11P2
1f2D . ~B3!
When the relationz̆2s@1 is satisfied, Eq.~4.15b! re-
quires the relations given as

0,P1
2!1, 0,P2

2!1.

This means thatR given by Eq.~B2e! may satisfyRÞ0 even
at z̆2s5`. By considering this fact, the formulas give
above are derived.

The coefficients (P1
1, P2

1, P1
2, and P2

2) should be deter-
mined using Eq.~4.19!. The coefficientR in the formulas
given above can be estimated using an equation derived
Eq. ~4.19! for j 51 andn52. If the relations given by Eqs
~6.1a!–~6.1c! are considered with substituting Eqs.~B1a!,
m

~B1b!, and ~B2b!–~B2d! into Eq. ~4.19! divided by (P1
2)3,

Eq. ~4.19! for j 51 andn52 leads to

0'22z̆2se2 z̆2s
x

P1
2P1

2

3S 22e2 z̆s/2z̆2se2 z̆2s/2 x21

P1
2 P1

112z̆se2 z̆sx11D
522z̆2se2 z̆2s

x

P1
2P1

2H 22e2 z̆sP1
1 d
s

R

3F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G12e2 z̆sz̆sx11J .

~B4!
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The factorx should not be zero to obtain a significant so
tion from Eq.~4.19!. Thus, Eq.~B4! givesR as

d

s
R5 z̆sx11

1

P1
1F d̆

s
f12

1

z̆s
~P1

1f11P2
1f2!G21

for z̆2s@1. ~B5!

The ratioP2
2/P1

2 in the formulas given above can be es
mated using an equation derived from Eq.~4.19! for j 52
and n52. If the relations given by Eqs.~6.1a!–~6.1c! are
considered with substituting Eqs.~B1a!, ~B1b!, and ~B2b!–
~B2d! into Eq. ~4.19! divided by (P1

2)3, Eq. ~4.19! for j 52
andn52 leads to

0'22z̆2se2 z̆2s
x

P1
2P1

2S 22e2 z̆s/2z̆2se2 z̆2s/2
x21

P1
2

P2
1

12z̆se2 z̆sx11
P2

2

P1
2D . ~B6!

The comparison between Eqs.~B4! and ~B6! results in

P2
2

P2
1 5

P1
2

P1
1 for z̆2s@1. ~B7!

If the relations given by Eqs.~6.1a!–~6.1c! and ~B7! are
considered with substituting Eqs.~B1a! and ~B1b! into Eq.
~4.19! divided by (P1

2)4p/6, Eq. ~4.19! for j 52 andn51
leads to

22z̆2se2 z̆2s
x

P1
2P1

2S 2
e2 z̆s/2

z̆s
z̆2se2 z̆2s

x22

P1
2P1

2

22e2 z̆2s/2
x12

P1
2

1

P1
1D P2

11P2
1Z21

11e2 z̆s/2

2z̆s
H ~P1

1P1
1f1

1P2
1P2

1f2!
ez̆s

~ z̆s!2 S 2z̆2se2 z̆2s
x22

P1
2P1

2D 2

28S P1
1f1

1P2
1

P2
1

P1
1 f2D ez̆s/2

z̆s
z̆2se23z̆2s/2

x12

P1
2

x22

P1
2P1

2

14Ff11S P2
1

P1
1D 2

f2Ge2 z̆2sS x12

P1
2D 2J

14
ez̆s

z̆s
F d

s
R

Y21
21

~ z̆21 z̆!s
1

P2
1

P1
1e2 z̆2s

Z21
21

~ z̆21 z̆!s
GY50,

~B8a!

where
03120
Y[2
1

z̆s
~P1

1P1
1f11P2

1P2
1f2!~ z̆2s!2e23z̆2s/2

x21

P1
2

x22

P1
2P1

2

1S P1
1f11P2

1
P2

1

P1
1 f2D e2 z̆s/2z̆2se2 z̆2s

x12

P1
2

x21

P1
2

1S P1
1f11P2

1
P2

1

P1
1f2D e2 z̆s/2z̆2se2 z̆2sx11

x22

P1
2P1

2

2Ff11S P2
1

P1
1D 2

f2G z̆se2 z̆se2 z̆2s/2x11
x12

P1
2

. ~B8b!

The coefficientY can be found asY'0 for z̆2@1. This
relation can contribute to simplifying Eq.~4.19! for j 51 and
n51. In Eq. ~B8a!, the ratios Y21

21/( z̆2s1 z̆s) and

e2 z̆2sZ21
21/( z̆2s1 z̆s) are finite values forz̆2s@1 because of

Eqs.~4.16d! and ~4.16e!.
On the other hand, Eqs.~4.4e! and ~4.15b! for 0<d̆2

1/s
!1 show that the coefficientP2

1 should be given as

0,P2
1!1 for 0,d̆2

1/s!1, ~B9!

since the pair connectedness should satisfyP12(r )'0 for
p12(r )'0 derived from Eq.~2.1!. As a result, Eq.~B2a!
should be rewritten as

z̆sx11'Ppf1[
1

2
S d̆

s
D 2

e2 z̆sf11
1

z̆s

d̆

s
~12e2 z̆s!P1

1f1

1
1

2
~ez̆s221e2 z̆s!~P1

1!2f1 . ~B10!

In addition, the coefficientP1
2 defined by Eq.~4.15b! in-

cludesP̂12( z̆) and P̂22( z̆). The coefficientsP̂i j ( z̆) are given
as the integration ofPi j (r ) expressed by Eq.~4.4e!. Hence,
the coeficientsP̂12( z̆) andP̂22( z̆) should be zero, if attractive
forces do not exist betweeni 51 and j 52 particles and be-
tween i 52 and j 52 particles. Thus, the features ofP12(r )
andP22(r ) in the absence of attractive forces can be dem
strated by Eq.~B9!.

The coefficientP1
1 can be estimated using an equati

derived from Eq.~4.19! for j 51 andn51. If the relations
given by Eqs.~6.1a!–~6.1c! are considered with Eqs.~B5!,
~B7!, and ~B9! after substituting Eqs.~B1a!, ~B1b!, ~B2b!–
~B2d!, and~B3! into Eq. ~4.19! divided by (P1

2)4, Eq. ~4.19!
for j 51 andn51 leads to a factorized equation compos
of two factors as

@Pf11~Pp!2f2#2H 12e2 z̆s
k̆

z̆

d̆

s
~Pp!2f12PpP1

1

1
~P1

1!2

2~ z̆s!2 F ~ez̆s221e2 z̆s!P1
11 z̆s

d̆

s
~22e2 z̆s!G J

50, ~B11a!
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where

P[~Pp!21~P1
1!2S d̆

s
2

1

z̆s
P1

1D 2

2
2

z̆s
~12e2 z̆s!P1

1PpS d̆

s
2

1

z̆s
P1

1D . ~B11b!

An equation that includes at leastk̆/ z̆ should be meaningful
so that Eq.~B11a! leads to

12e2 z̆s
k̆

z̆

d̆

s
~Pp!2f12PpP1

11
~P1

1!2

2~ z̆s!2

3F ~ez̆s221e2 z̆s!P1
11 z̆s

d̆

s
~22e2 z̆s!G50,

~B11c!

In Eq. ~B11c!, terms withP2
1 are ignored owing to 0,P2

1

!1 for 0,d̆2
1/s!1. As a result, Eq.~B11c! does not in-

cludef2.

2. A formula for evaluating the percolation threshold

The percolation threshold for the fluid mixture charact
ized by Eqs.~6.1a!–~6.1c! is determined using Eq.~5.7!. If
the relations given by Eqs.~6.1a!–~6.1c! are considered with
the coefficientR given by Eq.~B2e! and the ratios given by
Eq. ~B7! after substituting Eqs.~B1a! and ~B1b! into Eq.
~5.7! multiplied by z̆2se2 z̆2s(P1

2)22, a specific form of Eq.
~5.7! can be found for the fluid mixture as

z̆2se2 z̆2s
x

P1
2P1

2 1
1

2

ez̆s/2

z̆s
z̆2se2 z̆2s

x22

P1
2P1

2 ~Q1
1P1

1f1

1Q2
1P2

1f2!2e2 z̆2s/2
x12

P1
2 S Q1

1f11Q2
1

P2
1

P1
1 f2D

1
d

s
R

ez̆s/2

z̆s
z̆2se2 z̆2s/2

x21

P1
2 ~P1

1f11P2
1f2!

2
d

s
Rx11S f11

P2
1

P1
1 f2D'0 for z̆2s@1. ~B12!

For the relations given by Eqs.~6.1a!–~6.1c!, the coeffi-
cientsQi

m defined by Eq.~5.4d! results in

Q1
15

e2 z̆s/2

z̆s
F2

e2 z̆s212 z̆s

z̆s
P1

12
d̆

s
~ z̆s11!G ,

~B13a!

Q2
15

e2 z̆s/2

z̆s
F2

e2 z̆s212 z̆s

z̆s
P2

1G , ~B13b!
03120
-

Q1
2

P1
2 '2ez̆2s/2

d

s
R, ~B13c!

and

Q2
2

P1
2 '2ez̆2s/2

d

s
R. ~B13d!

In Eqs. ~B13c! and ~B13d!, the expression given by Eq
~B2e! is used.

If the coefficientR given by Eq.~B5!, the ratios given by
Eq. ~B7!, and the coefficient given by Eq.~B9! are consid-
ered after the substitution of Eqs.~B13a!–~B13d!, Eqs.
~B2a!–~B2d!, and ~B3! into Eq. ~B12!, the percolation
threshold should be found from a formula given as

@Pf11~Pp!2f2#FPp2H ez̆s212 z̆s

~ z̆s!2
P1

11
d̆

s
1

1

z̆s

d̆

sJ P1
1G

50. ~B14a!

Equation ~B11c! is independent off2. The percolation
threshold also should be independent off2. Therefore, the
relation between the coefficients at the percolation thresh
should, according to Eq.~B14a!, be given by the formula

Pp2Fez̆s212 z̆s

~ z̆s!2
P1

11
d̆

s
1

1

z̆s

d̆

sGP1
150. ~B14b!

In Eq. ~B14b!, terms withP2
1 are ignored owing to 0,P2

1

!1 for 0,d̆2
1/s!1. As a result it does not includef2.

APPENDIX C: THE PAIR CONNECTEDNESS

The behavior of the pair connectednessPi j (r ) can be
readily estimated at the particular distancer 5s i j .

The second term on the right-hand side of Eq.~4.1! is a
continuous function ofr at r 5s i j . Accordingly, the pair
connectednessPi j (r ) given by Eq.~4.1! must satisfy

lim
e→0

2ps i j @Pi j ~s i j 1e!2Pi j ~s i j 2e!#

52 lim
e→0

H F d

dr
Qi j ~r !G

r 5s i j 1e

2F d

dr
Qi j ~r !G

r 5s i j 2e
J .

~C1!

If Eqs. ~4.4c! and ~4.4d! are considered with the relatio
Pi j (r )50 (r ,s i j ) after substituting Eq.~4.4a! into Eq.
~C1!, the pair connectednessPi j (r ) at r 5s i j can be found as

Pi j ~s i j !52
1

2p

s j

s i j
(
n51

N S z̆ns i

d̆i
n

s i
2Pi

nD e2 z̆ns i /2
aj

n

s j
.

~C2!

To derive Eq.~C2!, Eqs. ~4.15a! and ~4.15b! must be con-
sidered.
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By considering Eq.~6.1a!, the coefficientsaj
n/s j given by

Eq. ~4.18a! can be rewritten as

e2 z̆s/2
aj

1

s
5

p

3 S 2z̆2se2 z̆2s
x

P1
2P1

2D 21

3F2
1

z̆s
z̆2se2 z̆2s

x22

P1
2P1

2
Pj

1

1e2 z̆s/2e2 z̆2s/2
x12

P1
2

Pj
2

P1
2G , ~C3a!

e2 z̆2s/2
aj

2

s
5

p

3
RS 2z̆2se2 z̆2s

x

P1
2P1

2D 21

3Fez̆s/2

z̆s
z̆2se2 z̆2s/2

x21

P1
2

Pj
12x11

Pj
2

P1
2G ,

~C3b!
. A

03120
whereR given by Eq.~B2e! is used.
If the use of Eqs.~B2a!–~B2d! and ~B3! is considered

with the relations given by Eqs.~6.1a! and ~6.1b! after sub-
stituting the coefficientsaj

n/s j given by Eqs.~C3a! and
~C3b! into Eq. ~C2!, the pair connectednessP11(s) for i
51 and j 51 particles can be found atd/s50 as

P11~s!5
z̆s

12 S d̆

s
2

1

z̆s
P1

1D P1
1~Ppf1!21. ~C4a!

In Eq. ~C4a!, terms with P2
1 are ignored owing to 0,P2

1

!1 for 0,d̆2
1/s!1. As a result, Eq.~C4a! does not include

f2.
Similarly, the other pair connectednessPi j (s) for i -j par-

ticles can be found as

P12~s!5P21~s!5P22~s!50. ~C4b!

In addition, Eqs.~B5!, ~B7!, and~B9! are used to derive Eqs
~C4a! and ~C4b!.
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