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Analytical estimate of percolation for multicomponent fluid mixtures
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The size of a dense region of a particular constituglj} {n a nonuniform distribution of particles generated
in a multicomponent fluid mixture can develop under certain conditions. If both the attractive force between an
L particle and a particle of the other constituenf<) and the attractive force betweel{ particles are much
weaker than that betweefy, particles, then the percolation due to the growth of the dense regifppHrticles
can hardly be affected by the addition 6f; particles into the fluid mixture. In that case, dense regions
composed ofL { particles can be formed passively. To derive these results, it is assumed that such a dense
region is an ensemble of particles bound to each other as particle pairs that satisfy the c@hghtion(r)
<0, whereEgj; is the relative kinetic energy farandj particles and;; (r) is the pair potential. The percolation
in the fluid mixture can be estimated analytically. According to the pair connectedness fuPgionderived
for evaluating the percolation, the probability that &g particle is located near anothél, particle can
be insensitive to the addition of { particles. The magnitude @?;(r) can be maximized for a pair of]
particles interacting with the most strongly attractive force having the largest value of the effective ranges in a
fluid mixture system. These particles can contribute to making the phase behavior of the fluid mixture com-
plicated.
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. INTRODUCTION and an.,-rich phase with the formation of a boundary be-
tween the two phases. If the temperature is raised near the
The distribution of particles in a multicomponent fluid consolute point, dense regions 8§ particles in theC,-rich
mixture can vary considerably depending on its compositionphase should develop microscopically near the boundary,
upon the nature of its composition, the densities of constituwhile dense regions of; particles in thel,-rich phase
ents, its temperature, and so on. Microscopically dense reshould develop microscopically near the boundary. If colloi-
gions of particular particles formed in the fluid mixture can da_‘l particles prefgrrmg thélz'”Ch. phase are distributed in
significantly influence its various macroscopic phenomen his complex medium, those particles should aggregate close

found for the fluid mixture. The present interest is focused o> the boundary in theC,-rich phase near the consolute

L . X o oint. In contrast, colloidal particles preferring tlig-rich
estimating the mean size of the dense regions. A criterion fo hase should aggregate close to the boundary irCaech
the growth of dense regions into macroscopic size can b

. : hase near the consolute point. Such phenomena were dem-
given as that for the growth of the mean size of the densgnstrated experimentally for the binary fluid mixtures of 2,6-
regions. Using this measure, it is possible to evaluate th@jtidine plus watef2]. Thus, it is considered that the devel-
percolation threshold at which the dense regions can growpment of the nonuniform distribution of each constituent in
without bounds due to the contact between microscopicallypinary fluid mixtures can induce the aggregation of colloidal
dense regions. particles[3] or the contraction of a flexible linear polymer
For a binary fluid mixture, the viscosity anomaly can be[4] in the binary fluid mixtures.
induced near the consolute point corresponding to the critical Density fluctuations in a specific constituent in a multi-
transition point for demixing the two constituents macro-component fluid mixture can induce density fluctuations for
scopically. Many experimental results concerning the revelaother constituents as predicted from the aggregation of the
tion of the viscosity anomaly are known]. It is expected colloidal particles described above. This phenomenon can be
that hydrodynamical transport phenomena are influenced b§ factor complicating a phase diagram for the multicompo-
the generation of a nonuniform distribution of particles in anent fluid mixture. Monte Carlo simulation revealed such
fluid mixture. The nonuniform distribution of particular par- complicated phase diagrams even for a binary fluid mixture
ticles can be a significant factor inducing the viscositycomposed of particles interacting with the attractive force
anomaly, since this nonuniformity should develop near thelue to a square-well potentigs].
consolute point. Furthermore, complexity characterized by the extent of
For temperatures above the consolute point, a binary mixthe density fluctuations can be found in a multicomponent
ture composed of constituenty and £, should be macro- fluid mixture. The diversity of dense regions for a constituent
scopically homogeneous. For temperatures below the conséan be regarded as a measurement of the complexity. This
lute point, the binary mixture separates into&grich phase Eies]peCt is supported by the results of Monte Carlo simulations

In the present work, percolation behavior concerning
*Electronic address: kaneko@mailaps.org dense regions of a constituent in a multicomponent fluid
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mixture provides a measure for the development of density If u;; is a repulsive potential, i.e4u;;>0, the probability
fluctuations for a specific component. should bep;j(r)=0. In addition, the repulsive potential in
A bond between thé andj particles in the multicompo- the present work is only the hard-core potential.
nent fluid mixture is defined as a state satisfying the condi- The factor exptBu;) in the grand partition function can
tion Ej;+u;j(r)<0 [7]. An ensemble of particles linked by be expressed as the sum of the contributions to the bound
such bonds is considered a physical cluster in the work agtate and the unbound state. Then, the pairwise bond prob-
hand. In the abovek;; andu;;(r) for a pair ofi andj par-  ability p;;(r) plays an important role as
ticles are the relative kinetic energy and pair potential, re-
spectively. e Mi=pj(r)e i+ [1—pj(r)le . (2.2
The attractive force between particles contributes to the . , ) ) ,
formation of dense regions of particles in the fluid mixture. I EQ- (2.2) is substituted into the expression of the pair cor-
Thus, a dominant fraction in particles distributed in a densé€lation functiong;;(r) described by the use of the grand
region should be occupied by particles constituting pairsoartmon function, the contribution of the bound state to
formed by the attractive force. It is possible to consider eacidij(") can be separated from that of the unbound state.
dense region in the fluid mixture as an ensemble composed EQuation(2.2) signifies that the +Mayerf_ function f;;
of particles bound to each other by the attractive force. Par=€ ““i —1 is the sum of a factofj contributing to the
ticles constituting each pair should then satisfy the conditiofPound state and the other factff not contributing to the
Ei;+u;j(r)<0. Therefore, the dense region is regarded apound state. Thus, Mayer's mathematical clusteiagrams
the physical cluster of particles linked by bonds defined bydefined in terms of bondg constitutingg;; can be expressed
the conditionE;; + u;;(r)<O0. as mathematical clusters consistingfﬁf andfi’} due to the
In this paper, the mean size of the dense regions is estrelationf;; =f§+fi’] . According to Eq(2.2), fﬁ andf; are
mated as that of the physical clusters described above. Thgven as
percolation relevant to the dense regions is regarded as that
which concerns the physical clusters. An analytical estimate  fi; =pjj(r)e™#"i and f¥=[1-p;(r)Je”i—1.
of the percolation follows from the solution of an integral . o )
equation with a closure scheme. Requirements for the perco- A Physical cluster consisting of particles bound to each
lation threshold will be derived in Sec. V B. The percolation Other satisfying the conditior;; + u;;(r)<0, can be ex-

thresholds evaluated for specific two-component fluids willtracted from the mathematical Slusters as a mathematical
be given in Sec. VI. cluster including the product of;; . As a result, the pair

] -

In order to derive an analytical solution for the integral correlation functiorg;; (r) can be separated into a correlation
equation, a practical expression for closure is required. Thi§inctionP;;(r) for i-j particles belonging to the same physi-
expression will be obtained by estimating the behavior of thecal cluster and a correlation functialy; for ani particle
correlation functions at large distances. The expression for Belonging to a physical cluster and article belonging to
multicomponent mixture will be given in Sec. Ill C. An ana- another physical cluster.
lytical solution for the integral equation will be presented in  The pair connectedne8;(r) is important to estimate the
Sec. IV. mean size of physical clustef8]. According to the above,

the pair connectednes;(r) can be related to the pair cor-
relation functiong;;(r) as
II. PAIR CONNECTEDNESS

. . gij:Pij+Dij' (23)
In the present work, a bound state for ihendj particles
is defined as the state satisfying the conditBn+ u;;(r) The pair connectednes;(r) is defined as the probabil-
<0 for the sum of a pair potential;;(r) plus a relative ity p;p;P;;(r)dr;dr; that both the particle in a volume ele-
kinetic energyE;; . Particle pairs that can be composed of mentdr; and thej particle in a volume elementr; belong to
particles constituting a fluid mixture belong to a group ofthe same physical cluster. In the aboye,and p; are the
pairs characterized by a bound st&g+u;;(r)<0 or the densities of thé andj particles for a uniform distribution,
other group of pairs characterized by an unbound dEgte respectively. The probability that theparticle indr; and the
+u;;(r)>0. Complicated phase behavior of the fluid mix- j particle indr; do not belong to the same cluster is ex-
ture should be characterized by the former. pressed ap;p;D;;(r)dr;dr;. Hence, the physical meanings

Then, the probability;; (r) that a pair ofi andj particles  of P;; andD;; require that
satisfies the conditioi;; + uj;(r)<0 should be considered

and is given as limP;=0 and limD;=1,
r—oo r—oo
B - Bujj B since lim_,..g;;=1. In addition, if a cluster has a fractal
pij(r)=2m7 1/2J0 yY%evdy, (2.) structure then Pj;(r), according to the feature of
pip;Pij(r)dridr;, provides the characteristics of the fractal
structure.
wherey is defined ag/z(ﬁEij)l’2 [7] and B as B=1KT. If eachfﬁ is defined in terms of af™ bond, thef * bond

Here,k is Boltzmann’s constant anflis is the temperature. corresponds to the pair of particles satisfying the condition
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Eij+u;j(r)<0. Particles jointed by * bonds form a physi-
cal cluster. If the physical cluster includesindj particles,

the physical cluster includes the particles contributing to a

diagram having at least one path of all the bonds between
the root pointsi and j, at which thei and| particles are
located. Such diagrams are those that contribute;to

The collection of diagrams contributing t8;; can be
separated into the sum of two parts, nam@lify and N,JJr

The partCiT is the contribution of nonnodal diagrams having

at least one path of afi*-bonds betweem andj. The part

Nﬁ represents the contribution of nodal diagrams having at

least one path of alf* bonds between andj. Hence,Nﬁ

can be determined by the convolution integral of the product
of Cﬁ and Pj; . Thus,Pj; can be expressed by an integral

equation[8] as

L

Pij :CiJj”szl Pkf CixPydry., (2.4

whereL is the number of constituents. This equation has the
same mathematical structure as the Ornstein-Zernike equa-

tion.

IIl. CLOSURE SCHEME FOR SIMPLIFYING THE
MATHEMATICAL TREATMENT

A. Simple closure scheme for the integral equation

A closure scheme for Eq2.4) must be obtained to esti-
mateP;; .

The pair-correlation functiorgﬁY due to the Percus-
Yevick (PY) approximation can be expressed gi?eﬁ”ij
=1+N;;. Here,Nj; is the contribution of the nodal dia-
grams forf bonds. If the relatiore ™ AYi = ffjr + fi’] +1 is con-
sidered, the above approximation is rewritten as

g =i (LN + NS )+ (FF + DN+ (7 + 1) (14N,

To obtain this equation, the relatidw; =N§+ Nii must be

considered. The factdrli’} is due to all nodal diagrams that

do not include paths of al™ bonds betweem andj. The

PHYSICAL REVIEW E 64 031201

) [1—pij(r)Je” P +
Da-[1-py(r)]e P Y

pij(rcgY

= 3.2
A -(opy e )
and
PY
D= P+ — (3.2
ij ij 1_ b . .

Equation(3.2a can be used as closure for §8.4) if c;;" is
given. Equation$3.23 and(3.2b are applicable when either
Bu;;<0 or Bu;;>0, respectively.

In addition, Eq.(3.29 shows that the symmetrZ;;
=Cj+i is maintained due to the symmet®y; =P;; .

B. Behavior of C; for 1<r
1. Behavior of G for Bu;;<0 and 1<r

The closure scheme given by E@.29 is not a practi-
cable way to solve Eq2.4) analytically.

Fortunately, Eq(2.4) has the same mathematical structure
as the Ornstein-Zernike equation. The Ornstein-Zernike
equation can be solved analytically for some fluids if the
mean spherical approximatidiMSA) is used. In the MSA,
the direct correlation function;; is given as the sum of the
short-range and long-range contributionsC[f can also be
given as such a sum, the procedure for solving g} can
be simplified, as is found in the procedures concerning the
MSA.

The behavior ofcﬁ at a great distance betweérand
can be readily determined.

When the distance betweérand|j is sufficiently large,
| Buj;| should be small. Equatiof2.1) can then be approxi-
mated as

4 4
pij(r)= ﬁ(_ﬂuij)glz_ ﬁ(_ﬂuij)yz

terms in the above equation can be separated into those con-

stituting P;; and those constitutin@;; by considering the

relationg;; = P;; + D;; . Thus, the expressions corresponding
to P;; andD;; can be determined from the separated terms as

Py =T oy e+ (ff +1)(P; —Cjf)

(3.139
and

Dy =(ff+1)ge’i—(ff +1)(P;—C;f). (3.1b

To obtain these equations, the reIatiBn=ijr
be considered.

By considering fi=p;;(r)e A%, e Ali=f +ff+1,
and the PY approximatiogf;¥(1—e®"i)=cj;", Egs.(3.13
and(3.1b can be rewritten as

+ijr must

Yy 3.3

2
+m(_ﬂuij

The substitution of this approximation into E@®.23 results
in

PY
+

+ J i_ . 3/2_&_ B2,
i _ﬁuil{?)\/;( Ui Tg g TR T

+Pij

4 1
= Buj;— ﬁ(—ﬁuij)yz_ 5(—3Uij)2

32
+—=(—Bu)**+ -

15/

. (3.9
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If cff¥/(—Bu;;)=1 for the MSA is substituted into this re- 2. N-term potential
sult, C+ for 1<r can be written as Mathematical difficulty cannot be avoided when applying
the above-mentioned closure scheme to analytically solve
ij'w4/(3 \/;)(_Buij)y% (3.5 Eq. (2.4) because powers of the potential are included in the

closure. To avoid this difficulty in the present work, it is
To derive Eg. (3.5 from Eg. (3.4, the condition assumed that the potentia} is given as the sum of/ terms
— Bu)P. <4/(3 — Bu.)¥2 has been assumed for 1 v.vhere.each term has the same feature as the Yukawa poten-
(= Buy)Py<4/(3m) (— Buy) tial. It is an N-term potential given as

<r.

The MSA results in the relation Iimx(g” 1)/ N
(- /E?uI )Y 1/2, since the PY approximation is given as —ﬂuij(f)ZE w(”)(r) (3.93
g,] =cj; /[1—exp(Bu;)]. The conditionP;; /(g;;—1)<1 is n=

always satisfied, so tha®;; for 1<r should satisfy ¢;;
—1)I(— Buy) =P, I(— Buy)>P, I(— Buy) 2. Therefore, Where

1/2_
the relation lim_ ..P;; /(— Buj;)““=0 can be derived. Thus, exp —z,r)

the above assumption is validated. Wi(jn)Ean)di(n)d,(n)T for r=oy.
2. Behavior of R; for |Buij|<1 and 1<r (3.9
Using Eq.(3.3), the expansion of Eq3.29 in powers of  Here, an assumption for the coefficierss should be pro-
— Bu;; can be performed as vided as
CPY O<Zl Zz\' . SZN<m (390)
P, = u 1’2+ — u
- Buy 3\/_( Au;) ( Auij) This relation is useful, when efficient terms fioe 1 should
. be extracted from the power of thé-term potential.
64 4 Cij The effective ranget™, of the attractive force between a
| ——— ——=| (= Bu;)¥%+ .. |+ L NOR :
2772 57 J - Buj; particlei and a particlg due to theN-term potential can be
determined fon satisfying bothd{" # 0 andd{™ #0. If both
4 " 1 d™+0 andd{”#0 only for n=ng is satlsfled then the at-
X[ 1+ 3\/;( Buij) "+ ( Buij)+ tractive force due to thev-term potential has the effective

ranger{'=z,*.
If the effective range of the attractive force betweér’
by particles is relatively wide, the probability that thej’ par-
If the approximation given by Eq3.9 and ¢;;'/(—Bu;j) ficles fall into a bound stat&;,;,+uj;(r)=<0 should be
=1 for the MSA are considered in E¢3.6), the result can high enough. Thus, a pair of particles specifiechyn i, at
be expressed as which z,, is the minimum value in Eq(3.9a should effec-
tively contribute to the percolation due to the contact of mi-
22 , croscopically dense regions.
Pij ZF(_BUU)BZ for uj;<0. 3.7 The N-term potential expressed by E®.9a can be use-
™ ful to estimate the percolation in a multicomponent mixture

) _ o composed of particles interacting with attractive forces hav-
If a physical cluster in a fluid mixture has a fractal structure,ing various effective ranges.

thenPj;(r) given by Eq.(3.7) should represent the charac-
teristics of the fractal structure. 3. Additional simplification of the closure scheme.

The substitution of Eq(3.939 into Eq. (3.8 results in

(3.6

C. Expression of a simple closure scheme

1. A closure scheme similar to the MSA C0+ ——{-Bu, (r)}3’2
. - \/— 1
According to Eqs(3.5), a closure scheme similar to the
MSA can be obtained as N 32 4
=Cy" (N +— \/_ Z k§VdMd(Mexp(—z,r) T
i ot 4 312
Cij :Cij +ﬁ(_ﬂuij) for Buij<0, (38) (3103
In Eq. (3.8), the power ¢ Bu;;)¥? should be estimated as
whereCﬂ-+ is the short-range contribution. that for r>1. If this fact and the relation €z,<z, (n’
Ultimately, Eq. (2.4) can be solved using the closure =2,3, --) assumed by Eq3.9¢ are considered, E43.10a
scheme given as E@3.98). should be rewritten as
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4 3 1 3
Cﬁ(r):c8+(r)+—3\/;{(kgl)di(l)dj(1))3/29xp(—Ezlr>rT/2 §1=§zl, (3.120
3 N 1
+§(k(()1)di(l)dj(l))1/22 k(()n')di(n')d](n') gn,zzn,—kizl (n"=2.3,...), (3.129
n'=2
Xexp —z r—lzr L (3.10H ”kla_la.lzi &(k(l))s/z(d_(l))s/z(dgl))s/z (3.128
2% e[ : oG va o i j v (9.

The second term on the right-hand side of Ej10b decays a"d
within a longer range than the third term. Particles that in- 5
teract with the attractive force contributing to the second “kg’ain'aln' __C(kgl))1/2kgn’)(di(1))1/2di(n’)

term can efficiently contribute to inducing the percolation Jm \a

due to the contact of microscopically dense regions in a fluid )

mixture. Particles that interact with the attractive forces con- X(dfl))l’zdj(” ) (n"=2,3,...).
tributing to the third term cannot contribute efficiently to the (3.125
percolation. '

In Eq. (3.10b, the effect of the factor (£)*? should be  Thys, the closure given by E¢B.114 is characterized by the
approximately treated to obtain an analytical solution for Eqparameterf,. The effective ranges of the attractive forces

2.4. can be characterized fy, due to Eqgs(3.129 and(3.12h.

The decrease iﬁ:ﬁ(r) due to each term of the exponen- In the ab th d &%Blal' tactor ch terizi
tial function can be much more dominant than that due to the ' \N€ @00V€, the produkqd; d; IS a factor characterizing

factor (1)32 asr increases. Considering this, the contribu- the strength of the long-range attractive force. In contrast, a
tion from the factor (1#)¥? can be approximated byrlin ~ product expressed dg d' di' can be regarded as a factor
Eq. (3.10b. characterizing the strength of a short-range attractive force.

Another approximation can be given by requiring the re- The approximation given by E¢3.114 for f.=1 some-
lation (1+)¥2=e~Z'"/r for 0<r—a<1. An approximate ex- what overestimates the long-ranged Contributiomqf(r),
pression given by the requirement can be found as since the contribution of (1)¥? is approximated as

(1/\a)(1/r)
1 e1 F{ r

The alternative approximation given by E(.113 for
32 Jar 2a

. f.=e'2 somewhat overestimates the deca)CQT(r) depen-
dent onr, since the contribution of (1)%? is approximated
In the present work, the maximum hard sphere diameter ofs (S @)(1/r)exp:—r/(2a)]. .
particles distributed in the fluid mixture is applied as Accqrdmg to a previous study on Yukawa fluigigOl,

Thus, Eq.(3.108 can be approximated as overestimation of the Iong-rangevccv)ntrlbutlon@,11-*(r) can

lead to an overestimation of k{d'd[") at the percolation
exp( —z,) threshold. Fortunately, it is possible that the diagram repre-
senting the percolation threshold for the overestimation of
the long-range contribution has the same pattern as that for
the overestimation of the decay Gﬁ(r).

A hard-core potential resulting in a completely short-
range interaction betwedith andjth particles does not di-
rectly contribute to the interaction between them when sepa-
rated beyond a particular distanog . By considering this
for CJ™ it is assumed that

N
Cj(n=Cj (n+2 k

[<}=]
[®@X3
=
[®@X3
i)
~_~
w
[ERN
[N
Q

The comparison between Ed8.10hH and(3.113 according

to Eq.(3.99 shows that the coefficienis, should satisfy the
relation given as

0<z,<Z,<7Z3<---. (3.11h

Hence, pair particles interacting with the attractive force hav- CinJr(r) =0, for r=oy, (3.13

ing the effective range characterized By can most effi-

ciently contribute to the percolation due to the contact of o 1 ]

microscopically dense regions in the fluid mixture. whereor; is given asojj = (0 +y) for the diametew; of
Besides the relation given by E@.11h, each coefficient

) ) the hard core of particle and the diameter; of the hard
in Eq. (3.113 can be given as

core of particlg. If the short-range contributioﬁﬂ+ can be

neglected for =o; , the mathematical treatment of £G.4)

is considerably simplified as it was in the MSA. As a result,

it is possible that the use of E¢B.119 simplifies the esti-

z=0+ %aﬁ for f,=el? (3.12h Tazlaltion of the percolation due to the contact of microscopi-
y dense regions.

z,={, for f.=1, (3.123
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IV. A SOLUTION OF THE INTEGRAL EQUATION The relationP;;=0 for \;j<r<oy; is derived from Eq.
(3.13 by considering Iimiﬁwgij =0 and lim;_ou;j(oy;
_ _ +6)=o (6>0). Owing to this feature oP;;, the function
1. Using Baxter's Q function Qij(r) derived from Eq.(4.1) for |p /<1 cannot include
Baxter's Q function [9] is useful to obtain a solution of Powers ofr in the range)\“<r<<fj| . If this is considered
Eq. (2.4 for either a single-component fluid of particles in- with the feature o} (r) given in Eq.(4.49 and the behav-
teracting via the Yukawa potentifl0,11] or a multicompo- ior of Qj;(r) expressed by Eq4.4a, the funcnonQ”(r)
nent fluid mixture. Equatio2.4) can be solved analytically, should have a form expressed as
using Baxter'sQ function[9] with Egs.(3.119—(3.13 given
for an £-component fluid mixture.
Based on the mathematical procedure for the Orstein- 0=
Zernike equation9,12], P;;(r) and ij“(r) satisfying Eq. Qii(r)_n=l
(2.4) for the £-component fluid mixture are given by

A. A solution including unknown coefficients

N L D
ka -
- D:] +2’7Tk21 v_Pik(Zn)DEj

Zn

x(efinr_e*vzna'ij) ()\ji<r<crji), (4.49

d Lo
2Py (r)=— g Q(N+27m 2, pkf Q(t)(r—1)
e where

XPy(|r—thdt for Aj=r<e (4.1)

e Isik(in)zf P (e atdt. (4.40
q c B 0
ZWrCJ(F):—aQ”(r)%—Z Pk Qu(H)
KT TsurNg ] Owing to the relation given by Eq3.11b, the quantities

d P.«(z,) should satisfy the relation given as
XaQik(rH)dt for N\jisr<e, (4.2

where)\JI is defined using the hard-core diametersand Pik(z1)=Pi(z2)=- - (0<zys2zp<--+).  (4.40)
o aS)\],—Z(a'J o).

The functionQ;;(r) in Egs.(4.1) and(4.2) is introduced _ . e ) )
as This means that the quantiB(z,) is small if the effective

range of the attractive force between pair particlesdk is

short. The coefficient,, is given by Eqs(3.123 or (3.12b.

The reciprocal ﬁn characterizes the effective range of the

attractive force due to Eg$3.129 and(3.120.

where ;=0 (i#]) and g;=1. Equation(4.43 and the relatiorP;; =0 should be satisfied
The short-range contrlbutlon ©; (r) is expressed in Eq. over the range\;;<r<o; so that Eq(4.1) for r<oy; leads

(3.13. The characteristics of the short- range contributionto a relation given due to Eq#.4b), (4.49, and(4.4d as

C°+(r) should be provided b®;;(r), sinceQ;;(r) should

be related taC;; j (r) owing to Eq.(4.2. r
If the characterlstlcs of the long-range contribution toz 7| — Di“~+27r2
(r) are considered with the fact mentioned aba@g(r) n=1 )

may have a form expressed as

<3i,A<k>=5ij—(pm,)lfzfx ekrQ,(ndr, (43

ji

—zn +2 z,D ~ 2z

|k(zn ij
Zn

L N
—27>, > kaQje*anf P (H)e itdt=0. (4.5
k=1 n=1 0

Qij(r)= Q.J(r>+2 Dle ™ (\;<r<oy),

4.4
(4.49 If Eq. (4.4b) is considered, then E@4.2) leads to a rela-

tion expressed as

Qjj(r)= 2 Df} e_Z“' (oji=<r), (4.4b

N N L
and 2mrCii(r)= 2, Z.Djje™"" = X ze " 2, pDiQiu(zn)
Qi(N=0 (oj=r). (4.49 for oy <r, (4.6

In addition, the unknown coefficien3;; given above must
be determined using Eq#t.1) and(4.2). where
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The Laplace transformation of E¢4.10 results in

Qy(s)= J:Q,-k(ne—“dt

+2’7T2

eimo'j_e—su'j 1_e—S()'j)

m
1| Zm Ik

e

Xe*S)\kje*EmUkj -
s+z, S

(4.7

1
+ ——=—D)] e~ Zmhkig S
s+zp,

Here, Eq.(4.7) can be derived from the use of Eq4.49—
(4.4d. The relation betweerP;(z,) and Q;(z,) can be
obtained from Eq(4.7) as

N -
~ Z -
2’7TP|J(S): - 2 r?, e—(S+Zm)a'ij

m=1S+7,,

ik(im)kaj

c
-Dij+ 27, Pip
=

L
+2wk§1 PPi(8)Qy(9). (4.10)

2. A formula for determining R;(z,) and D}

By substituting Eq(4.8) into Eq. (4.11) for s=z,, a for-

mula determining the relation betweén;(z,) andDf} can
be obtained as

. . o N e*ina'j l_e*.ino'j
Qj(za) =€ 7N >, { e DN o
m=1 Zn+zm Z,
£ 271- Zm)\kj .
+> —— ]I(Zm)DIk T —e Mk
=1 Zy nTZm
e—ino—j 1— e—in(rj
X| o——+ = . (4.8
Znt+Zny Z,

By considering Eqgs(4.43 and (4.409, Eq. (4.1 for r
<oj can be rewritten as

L
-Dj+2r3 %ﬁik(in)ogj e

N
-3y

n=1 n
N . c .

+ 2, z,Djje ' +27 > pkf Qui(t)(r—1)
n=1 k=1 r

X Pi(|r —t|)dt. 4.9

Equation(4.9) is equivalent to Eq(4.5 that has no singu-
larity for 0<r<o, so that Eq.(4.9 is satisfied for 6<r
<o, If the terms in Eq(4.9) are then subtracted from terms
in an equation representing E@t.1) for oj<r, a formula
can be derived as

N L
2mrPyi(r)= E —Dirjf‘-f-zﬂ-E f_kﬁik(”zm)kaj ezl
m=1 =
c
r
+2m Y, Pkf Qij(t) (r =t) Py (r —t)dt.
=1,
(4.10

N’ -

Z - -
2mP;(20) = 2, oo i
=12z,+2,

—2772 f)_k|5
=
L -

+2m Y, pePi(z,)e ik
=

ik(im)DrkT}

N e 7k 1— e Yk
E Zm"lkDm +——
m= Z0+ 2 Zn
Zm}‘Jk
E Pkl(zm)Dlj -
= 0t Zm
e ino'k 1_ e*ina'k
— e 7k + = . (412
Z0+ 2z, Z,

3. Another formula for determining R (z,) and D]
If Eq. (3.13 is considered, then the substitution of Eq.

(3.113 into Eq. (4.6) results in

L

i~ 2, ZpPiQi(z). (413

2mkaandN= 2,0

By substituting Eq(4.8) into Eqg.(4.13), another formula to
determine the relation betwed;(z,) andDj} can be ob-
tained as
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2w KIANAr = 7,01

E E pkDikDjke” g

=1 k=1

- 2.+2 z e 240
Xe—ZmU’kJ n m

Zn+ Zm

L
TP\ A

2 . i
> pkDRDR =P} (zy)e M
11=1 z

M =

N
-2

m=1 k

m

. —z -7 47 e Witz et
X @~ ZmO] n~ 4m Vm _ n .
Zn+zm

(4.19

B. Formulas for unknown coefficients
1. Coefficients specified for tha/~term potential

Each coefficient expressed Bg; on the right-hand side
of Eq. (4.12 has the suffiy, although it does not belong to
the coeﬁicientsﬁij(in). The suffixesi found on the right-
hand side of Eq(4.14) belong to the coeﬁicient@{} . The

PHYSICAL REVIEW E 64 031201

and
£ Zn(f|/28—2mu'|/2 . . dn dm 1
EE zZ,0€ ~zy L ———P|m
= I(Zn + Zm) ) o1\ g ZmO|
2 m
+ P, Y ny PPZW”) b, (4.160
with
1 C o o .
'=c—I[(zatzn) oy~ znoe %] (4.160
ZnO'I
and
mne S [2,,0€7m%1— (2,4 2.) 07+ Zyyory @~ 2071 ],
ZmO'J' Zn0'| (4 166

Moreover, the use of the coefficieﬁ’l? and the volume
fraction ¢, simplifies Eq.(4.14) as

term on the left-hand side of E4.14) is a product given by

IV k
2mkpdi'd]!. These facts indicate that a coeffici@t can be 277—0 J e /2
divided into a factor having the suffixand the other factors zy 9]
hav!ng suffixeg. Thus, it is assumed that the coefflc@ﬁ aJ” 6 N ar am e:zmgj /2
is given as =_1_= ——

Oj Tm=11=1 O] 0| (24420

Dj} = —dMalexp(z,07/2), (4.153 i
X i PIZEn. 4.1

wherea' is an unknown coefficient. ch (.19

The expression of Eq4.12 can be simplified by the use

of a coefﬁcientPjn defined as 2. Coefficients specified for the two-terms potential

‘ The potential composed of two terms, i.e., E8.99 for

d| Pyj (Z ) N=2, is remarkable. If particles interacting with an attrac-
n_ ] n )
P] 122 ¢' o2 (4.15H tive force contributing only within a short range constitute a
! fluid mixture with particles interacting with an attractive
where ¢, is the volume fraction defined as force contributing over a long range, then E8.99 at least
for N=2 must be used to describe the features of these
- forces. Besides this, the coefficierts/ o for N=2 can be
b= €p|a'|3. (4.159  readily obtained from Eq4.163 as
an 1 2
The coefficientPjn defined by Eq.4.15bH must always be J - )(].”mpl!“, (4.183
positive, sinceﬁ”/oi should be positive for arbitary values of % X
j andn. According to Eq.(4.4f), this coefficient should be where
small if the effective range characterized bi,ﬂs short.
The use of the coefficierf?jn and the volume fractiom, 1, 1,
simplifies Eq.(4.12) as Y11 x12 * 2%
j i) j i
2l x| = 1 1 , (4.18b
n_ nma] i j B R £
—P'= 2 XI'x (4.163 X! X
oy’
where and
6. x=xMx22—x1%?21, (4.189
n— . -z aj 12
= Wz ni€ " (4.169 The substitution of Eq(4.183 into Eq.(4.17) results in
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”n ‘n 2
2me” zna/2 XE anPr

zn O'j r=1
6 2 2 2 ¢ ~ 2o 12
23 S S S | XX —
7T m=1r=1s=11=1 (zn+zm)o-,
gm

X —LﬂW+PPZWﬂ =0 (4.19

gj

V. MEAN SIZE OF PHYSICAL CLUSTERS
A. Cluster size

The equilibrium numben,, of physical clusters consisting
of v particles can be related to the pair connectedigss
according to the formula given by Coniglio, De Angelis, and
Forlani[8], as

2 v(v—=1)n,=

2<v

L L
2 2 Pipjf j Pij(ri,rj)dridr;.
i=1j=1 vJv

(5.

If the probability p(i) that particlei exists in a cluster is
independent of, then the factok ,vn, included in Eq(5.1)
can be related to the densipy of thei particles in the vol-
umeV as

1
pi=yP(H2 w,. (5.2

The mean physical cluster siz& is given by S
=(=,v?n,)/(Z,vn,), so that the substitution of Eqé5.1)
and(5.2) into this formula results in

L

>

S=1+

-1 L L
pk) > 2 pip,f P;(r)dr. (5.3
i=1j=1

PHYSICAL REVIEW E 64 031201

N 1/2 1/2 oM

6 i &\, (6 1)\
;(0—30—? Qi(0=2 |~ 2 pon| Q@ =
(5.40

where
e moi2[  gmoi_1-% o dm .
M=~ - ,——Lamm+14
Zm0i ZmOi gij

(5.40)

Thus, the coefficien®;; *(0) in Eq.(5.43 can be estimated.

B. Percolation at L=2
1. A two-component mixture£=2, N'=N\/)

The inverseQ;;*(0) can be readily estimated for a two-
component mixture system composed of particles interacting
with attractive forces that can be described by ffg¢erm

potential. Thus, the use of E¢6.4b results in@ﬁl(O) ex-
pressed as

Q15(0)
Q2(0)

Qi1'(0)
Q21'(0)

=[ane1‘l6ij(0)l]’l

1-— féézz(m

89241
7| 0% o

b1 b2

6
T o] o

1/2’\
-3 —3} Q10)

¢§Q11(0) '

X Z,

1/2A
} Q24(0)

(5.5a

where

According to Appendix A, the mean physical cluster size

Sgiven by Eq.(5.3 is estimated as

3) —12
) } Qi %0

L

>

2

(5.4a

=35 (2%

¢>z

© P1e 3Q22( )

de{Q;;(0)|=1—— —Q11(0)

E

o ‘/’5@11(0)@22( 0)

(71 )

Therefore, the mean physical cluster size diverges to infinity

ifbgl

erated under a condition satisfyiigy; *(0)= .
According to the comparison between Ed4.3) and

(4.7), the relation betwee@ij(O) aninj(O) is given as

& ¢
i

QI](O) 5” 77( ) Qu(o) (54b)
If Eq. (4.7) for s=0 is used with Eqs(4.153—(4.1509, an

expression foQij(O) can be derived as

(0) reaches infinity. The percolation due to the con-
tact of microscopically dense regions of particles can be gen-

b1 P2

_’J _§Q12(0)Q21(0) (5.5p

sk

If det|f)ij(0)| reaches zero under a certain condition then

661(0) diverges to infinity. Simultaneously, the mean
physical cluster siz& given by Eq.(5.43 diverges to infin-

ity. Therefore, the percolation threshold relevant to the per-
colation behavior of physical clusters should be estimated as
a particular state satisfying the following relation:

de{Q;;(0)|=0 (5.6)
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2. A fluid system specified b =2 and N'=2 betweeni=1 andj=1 particles. The fluid mixture can be
The percolation threshold can be readily estimated for 469arded as that in which hard-core spheres interacting with
two-component mixture systemCE&2) composed of par- the attractive force_ are mixed with hard-core spheres in the
ticles interacting with attractive forces due to the two-term@PSence of attractive forces.
potential (\V=2).
Equation(5.6) and the substitution of Ed5.49 into Eq. 2. Formulas for evaluating the coefficients P

(5.5b) lead to The coefficientP] can be estimated using an equation

2 - 1 derived from Eq.(4.19 for j=1 andn=1. According to
et 6 S 40! i X o2 Appendix B 1[Eq. (B110)], the coefficientP] satisfying the

T =1 x|1 ' x|2 ' relations given by Eqgs(6.19—(6.19 should be evaluated
using a formula given as

X21 Xll
+Qf| =PI+ —Pf . ) .
X; X - kd [1({d\" . 14 S
) 12872025(1)1 E ; eizo-i-\i—;(l—eizo')Pl
g
+| =] ¢162(Q1Q3-Q7Q3) s e ;
1 - . 1/d - 1d
1 - 1 - +§(eZ(r_2+e—Z(r)(Pi)2 _ E(;) e_Z(r‘f'.,_;
X EPlpz—mplpz)w. (5.7) o

. 1 - .
Here, Eqs(4.183—(4.189 must be considered to derive Eq. X(1-e *)Pi+ E(ez"— 2+e 2)(Py)?
(5.7). Thus, the percolation threshold for the two-component

mixture is given as a particular state satisfying Efj7). (P1)2 3 3 q 3
In addition, it is possible that one of the attractive forces — x pl+ = 5 (eZU—2+e—20)p1+20—(2—e—20)}
dominantly contributes to the generation of the percolation in 2(zo) g

the two-component mixture. Then, the other attractive forces

also should contribute to the percolation threshold. Equation =0. (6.29
(5.7) can be used to estimate their contribution to the perco-
lation threshold. Equation(6.23 is derived for¢,# 0. It does not, however,
include ¢,, since terms WithP% are ignored owing to 0
VI. SPECIFIC FLUIDS <P}<1 for 0<di/o<1. ThereforeP} is independent of
A. Formulas for evaluating the percolation threshold b2 o N ) )
The other coefficient®]', according to Appendix B 1, are
1. A specific fluid given as

To evaluate the percolation threshold for a fluid mixture
composed of particles interacting with attractive forces due P2~0 P2~0 (6.2H
i — i A 1 ’ 2 . .
to the two-term potential ’=2), all the coefficients ex-
pressed a@}‘ in Eq. (4.19 must be evaluated. Their evalu-

ation can be simplified for a specific two-component fluid 3. The percolation threshold
mixture. This fluid mixture is specified as The percolation threshold for the fluid mixture character-
L L . ized by Egs.(6.19—(6.10 is determined by applying the
o1=0,=0, 7;=2, 0<zo<zyo, ‘z0>1, relation expressed by E¢b.7). According to Appendix B 2

(6.1a8  [Eq.(B14b)], the magnitude oP} at the percolation thresh-
old can be found as

@ oa @ @ @ s s
L=—, 02«1, —=2=—, 0=-,
g1 g (0] g1 (0] g g a . . .
(6.1 Pi=20—[(z0)(€* ~2+e %)~ 26" +2z0+2] *
ki=k, and 0<ki<1. (6.10

x{zo+e " —[{1-(z0)2 (e 2 —2)e"+2]"2.

In the fluid mixture characterized by E@.13, the attractive 6.3
force interacting between=1 and j=1 particles decays

much more slowly than the attractive forces interacting be- ) ) )

tween dissimilar particles €1,j=2) particles and between EQuation(6.3) is derived fo.r¢2zé0. It does not, however,
i=2 andj=2 particles. Furthermore, the attractive forcesinclude ¢, since terms withP; are ignored owing to 0
interacting between=1 andj=2 particles and between = <P3<1 for 0<d3/o<1. Therefore, the percolation thresh-
=2 andj=2 particles are extremely weaker than the forceold determined by Eq$6.2a and(6.3) is independent of,.
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4. The pair connectedness;Ro;) 100

The behavior of the pair connectedne3g(r) can be
readily estimated at the particular distanceo;; where the
hard spheres of an particle and g particle contact each

~7 1, 1 z -z 1y2
X(l—e Z")P1+§(e 7—2+e *)(Py)

other. According to Appendix JEq. (C43], the pair \
connectednes®4(o) for i=1 and j=1 particles in the
fluid mixture characterized by Eq$6.13—(6.19 can be 10 &
found as fp/ .
= —_ o).
o l . ] o /
zofd 1 \Pi[1{d\® . 14 = \
= 1 _1 N —z0 —
Pll(o-) 12(0_ EO-P:L ¢1 2(0_) e +20—0_ & | /\
-1 1 //_\

(6.43 \
Equation(6.49 is derived for¢,+# 0. It does not, however,
include ¢,, since terms withP} are ignored owing to 0 0.1
<Pi<1 for 0<d}/o<1. ThereforeP,,(o) is independent 0 2 3 4 5
of ¢,. (20)p
The other pair connectedneBs; (o) for i-j particles in
the fluid characterized by Eq&.19—(6.10 can be found as FIG. 1. The pair connectednesg;(c)), for the two-
component mixture fluids characterized by E¢s13—(6.109 and
k/z=10. To evaluatéP,()),, Eq.(6.4a is used with Eqs(6.2a
Pis(0)=Pyy(0)=Pyy(c)=0. (6.4b and (6.3). The values of(P;;(o)), should be considered as those
evaluated for¢, having an arbitrary value different from zero.
Here, ¢, is the volume fraction of,j=2 particles. Each curve
B. Evaluation of the percolation threshold represents a percolation threshold. In addition, P.(0), and
(k/Z)(d/)? are dimensionless. The factos varies as the inverse
of the effective range of the attractive force betwegn=1 par-
The percolation threshold can be evaluated using Eqsicles. The factor k/z)(d/ )2 varies as the strength of the attractive
(6.28 and(6.3). force betweeri,j=1 particles.
Coefficients,¢, and P%, satisfying either Eqs(6.29 or
(6.3 are expressed as ¢f), [(¢41)p>0] and
(PDp [(P1),>0]. Then, the coefficientsd;), and (P),  however, be balanced with the positive contribution of a
represent the values @f; and P} at the percolation thresh- decrease irzo. Figure 1 demonstrates that the former and
old. the latter are balanced at the peak of each curve given under
Similarly, quantities and coefficients given at the percola-the condition that K/Z)(d/c)? [=4(3\m) *f(K{d?%/
tion threshold are expressed as those having the suiffix 0)¥qz0)"t (f,=1, e¥d] is constant. If zo is small
An increase in the effective rangez#(3/2)(z—Inf)™"  enough, the value oP,;(c) can sensitively depend on the
(fe=1, e of the attractive force due to a decrease iNnmagnitude oKMd/ g
zo should raise the probability that the bound state |f the probability that a 1-particle is bound near another
Ejj+u;j(r)<0 (i=1, j=1) is satisfied, since the increase 1-particle is high in the mixture system, then, the pair con-
in the effective range can allow the strong attractive fOfC%ectednesSPll(a))p for the mixture system should be large.
to interact over large distances between two particlestherefore, it is possible that the macroscopic homogeneity of
Thus, the increase in the effective range should result ifhe mixture system will become unstable, (R15(0)), is
an increase in the value ¢Pj;(o)), which relates to the extremely large. If the mixture system is characterized by a
probability that ani particle is bound near pparticle. The  strong attractive force having a long effective range, it
value of (P;;(0)), should be large, if the attractive force should be readily macroscopically separated into the
betweeni andj particles is strong and its effective range is 1-particle rich phase and the 2-particle rich phase.aifidj
long. particles interact with the most strongly attractive force hav-
On the other hand, a decrease in the magnitude Ghg the largest value of the effective ranges in a fluid mix-
K{Yd% o varying as the strength of the attractive forceture, the value ofP;;(r)), can be large. These particles can
should cause a decrease in the valuP g{ o). The negative  contribute to making the phase behavior of the fluid mixture
contribution of a decrease irKgl)dzla to Pyi(o) can, complicated.

Ao
O S A /
// N

—_

1. Coefficients determined from Egs. (6.2a) and (6.3)
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0.6 0.0004

20 = 15/2 \
jo= 2=
'75 %
o / fe=
& ~2 0.0002
N o = /
0.4 I - =
BN - /
. 3 ;
g ;‘5 0 0.1 0.2 0.3 0.4 0.5
~ )Q> (¢1)P
0.2 0.08

)

zo =3
/ 0.04 e
0 Lé%// /
0 1 2 3 4 5

[1/(§"d*/a)],

\

(Ea)p 0 0.1 0.2 0.3 0.4 0.5
(P1)p
FIG. 2. Volume fraction &,), in the two-component mixture ! 20 = 4/3
fluids characterized by Eq&6.1a—(6.19 andk/z=10. The values N v 1
of (¢1), should be considered as those evaluatedffphaving an = fc/
arbitrary value different from zero. Percolation takes place under cg //‘/2
the condition characterized by a point belonging to the upper region= 0.5 fe™ B
of each curve. In additiong, is the dimensionless volume fraction § //
of i,j=1 particles. = //
0
) ) 0 0.1 0.2 0.3 0.4 0.5
For the weakly attractive force, percolation can be gener- ($1)
ated if (¢1), takes on a large value. According to Fig. 2, the i
value of (¢1), is larger for[(k/z)(d/o)?],=2.5 than that FIG. 3. Percolation thresholds for the two-component mixture

for another. Then(P14(0)), is small, as known from Fig. 1. fluids characterized by Eq¢5.18—(6.19 andk/z=10. The values

In addition, the factof (k/z)(d/a)?], is a parameter depend- of [1/(k§"d? o)], should be considered as those evaluatedgor
ing on the strength of the attractive force and is dimensionhaving an arbitrary value different from zero. Percolation takes
less. place under the condition characterized by a point belonging to the

oo i iti )d% o) is di ion-
The strongly attractive force as given DQ&/Z)(d/U)Z] lower region olf)each curve. In addltloq, kﬁ d“/ o) is dimension
. - -P less. Here, 14{, takes a value proportional to the temperature be-
=50 should allow ¢,), to remain sufficiently small, i.e.,

hould ind It tor the | | frantion, C2USe of Eqs(3.99 and (3.9h. The factork{'d?/ o varies as the
should induce pe_rco ation even for the low V_O ume raCtIor"strength of the attractive force between=1 particles.

As known from Fig. 2, the value ofd;), remains small for

[(k/z)(d/c)?],=50. Figure 1, however, shows that

(P14(0)), for the strongly attractive force is large. Thus, the inat the relation betwengl)dzla and (r(/i)(ala)z is de-
strength of the attractive force plays an important role for. a4 from Eqs.(3.126 and(3.12) as

generating a nonuniform distribution.

2. The relation betweend), and [1/(K§d¥ )], dP=d#0, k®P=0, d"=0, k=0
’ ’ | ’

The factork{Yd?/¢ can be regarded as a dimensionless
parameter representing the strength of the attractive force.

Percolation thresholds can be evaluated for a particular val (1) _
of zo as the relation betweens) and[l/(KE,l)dzla)]p. YPhe coefficientky”’ determined by Eqs(3.129 and (6.19

For this purpose, the factdt$’d?/o must be related to the
factor (k/z)(d/o)2.

(i=1,2,..., n'=23,...). (659

for o= o is given as

The curved lines shown in Fig. 3 are the percolation (1)q2) —1 —23[ v [ %\ 21213
thresholds. (ko d ) :<3‘/; 120) |f(d> (6.5
By considering Eqs(6.1a, (6.1b), and(6.10), it follows o 4 f z
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Thus, the facto(l/(Kgl’dz/a)]p is evaluated, if the factors Furthermore, it is predicted that clustersigf=1 par-

(Ea)p and[(R/E)(a/a)z]p are determined withe,) , using ticles in a fluid containing,j=2 particles will be less flex-
Egs.(6.2a and(6.3). ible than those in a fluid without,j=2 particles, since, ]

In addition, the effective range ZLbf the attractive force =2 particles occupy rare regionsiof =1 particles. Such an
is related tazo, since a relation betweenr ando is given  SHect should contribute to hydrodynamical transport phe-
forf.=1b E, (3.12a and the other relation fd, = e12 b nomena found for a fluid mixture including particles such as
Eq (C3 12|3y q-(s. ¢ y i,j=2 particles. Thus, it is expected that a phenomenon

As illustrated in Fig. 3, percolation thresholds depend orﬁ'irr?;lgr r;(?xizlr?ascﬁgaiotﬂgltégfsé(l)u'fgi)(;/iﬁtc osity anomaly for

the decay closure expressed by 8.113. The decay of The attractive force betweenj=2 particles cannot be

closure depends onas ignored, so that,j=2 particles in the dense regions iof
=2 particles can hardly satisfy the conditid®); + u;;(r)
<0. The addition of,,j =2 particles causes dense regions of
11 '{ ) _ i,j =2 particles to develop only passively. Thus, the addition
——expg — zzr| for f,=1 NP
\/; r 2 can lead to a phase separation into the phase ri¢hj inl
particles and the phase richiin=2 particles.
In a multicomponent fluid mixture, the attractive force
and between a particle of constituedl; and a particle of the
other constituentsC ¢ is much weaker than the attractive
force betweenlg particles. Moreover, the attractive force
el 1 1 3 o betweenL ¢ particles is relatively weak. According to the
Vo Fex;{ - %r)exr< - Ezr) for f.=e"= above discussion, dense regionsdf particles should form
passively, if dense regions @ particles are developed in
L . . the multicomponent fluid mixture. Then, it is expected that
The approximation given TOfC: 1+someyvhat overestlrr_]ates the percolation due to constitueit can hardly be affected
the Iong—ran%e_d contrlbl_Jtlon atj;(r), since the contribu- by the volume fractions of ¢ particles.
tion of (1k)** is approximated as (1//‘_7)(11/,2)' The alter- The growth of a dense region of constitughtcan result
native approximation given for f.=e somf—rzwhat from the contact of small dense regions. This growth process
overestimates the decay of 3/£ha_e—dependept Cii(r),  can be similar to that known as cluster-cluster aggregation.
since the contribution of (1) is approximated as The distribution of particles resulting from cluster-cluster ag-
(e o) (LIr)exd —r/(20)]. o gregation leads to a fractal structure, while the dimension
Overestimation of the long-range contribution of of the fractal structure was determined dys-1.75[13]. If
Cii(r) (fc=1) can lead to an overestimation of the effective range of the attractive force is sufficiently large,
[1/(k§,1)d2/a)]p as follows from the thick solid lines in Fig. the dense regions can develop a structure having a fractal
3. Fortunately, the diagrams representing the percolatiodimension 1.5, according to E¢B.7) and the previous study
thresholds for the overestimation of the long-range contribuf10]. It follows that this structure also is little affected by the
tion have the same pattern as those for the overestimation efddition of £ particles, since the added? particles are
the decay ofcﬁ(r) (f.=e. This behavior is similar to essentially excluded from the dense regionsCgfparticles.

that found for the single-component fluid0]. Notwithstanding the quite different model from that in the
present work, it has been demonstrated that the fractal di-
3. The addition of i, =2 particles into the fluid mixture mensions found from the clusters aggregated in the binary

: . : . mixtures can be insensitive to molar fraction within the range
Percolation can be generated through=1 particles in of high molar fraction|14],

teracting with the attractive force characterized by Eqgs.
(6.19-(6.19. A nonuniform distribution ofi,j=1 particles

sh_ould be formed throu_gh the attractive force in the ﬂ_uid VIl. CONCLUSIONS
mixture. Thenj,j=2 particles in the absence of an attractive . . o _ .
force should distribute in rare regions iof =1 particles. It The dominant particles distributed in a dense region of a

should be considered thaj =2 particles can hardly distrib- particular constituent{s) in a multicomponent fluid mixture

ute in dense regions dfj=1 particles, since there is no can be defined as particles constituting pairs that should sat-
attractive force betweenigj=1 particle and d,j=2 par- isfy the conditionE;;+u;;(r)<0. It is assumed that the
ticle. Hence, ifi,j =2 particles are added into the fluid mix- dense region corresponds to an ensemble of particles bound
ture, they should occupy the rare regions gi=1 particles to each other by an attractive force. In the present work, the
more easily than the dense regionsi gf=1 particles. This dense region is a cluster that can contribute to the percola-
means that the percolation can hardly be affected by the adion.

dition of thei,j=2 particles. This interpretation can be dem- When both the attractive force between a particle of a
onstrated only if Eqs(6.29, (6.3), and (6.43 are indepen- constituentCs and a particle of the other constituenfs,

dent of ¢,. It suggests that the viscosity of the fluid will not and the attractive force betweefi{ particles are much

be simply reduced by addingj =1 particles. weaker than the attractive force betwegg particles in a
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multicomponent mixtureL ¢ particles should for the most ~ ~
part be excluded from the dense regionsCgparticles. As a ij— (Pipj)llzéij(k)szl Qik(K)Qjk(—k),
result,ﬁg particles are favored to be found in rare regions of -
L, particles. Dense regions composed.df particles should
be formed passively in the fluid mixture. Thus, the percola-g that Eq(A1) results in
tion generated by’ particles should hardly be affected by
the volume fractions of ¢ particles.
If £¢ particles are added into the fluid mixture, these par-
ticles should migrate into the rare regions 6f particles
more easily than the dense regions/gfparticles. Then, the S+ (pip) VP (K= Qi (—KQ (k). (A2
rare regions ofZg particles can fill up with the added ¢ k=1
particles. Thus, it is possible that the clustersCgfparticles
in the fluid includingZ ¢ particles are less flexible than those
in the fluid without £ particles. Such a phenomenon can From Eq.(A2), a relation is obtained as
contribute to the viscosity anomaly near the consolute point
for a multicomponent mixture.
If the probability is high that anparticle is located near a
j particle, then the value d?;;(oy;) is large. Ifi-] particles _ _
interact with the most strongly attractive force having the > QQI(O)Q{J-I(O):&J-+(Pipj)llzf Pij(r)dr. (A3)
largest value of the effective ranges in a fluid mixture sys- k=1
tem, the magnitude oP;;(o;;) can be maximized. Accord-
ingly, these particles can contribute to making phase behav-
ior of the fluid mixture complicated. Therefore, the substitution of E¢A3) into Eq. (5.3 results
The solution of the integral equation for the pair connect-jn
edness function requires a closure scheme. The expression
for closure specified bf,=1 results in the overestimation of
the long-range contribution o€ j(r). The expression for Lo
closure specmed by.=e'? somewhat overestimates the de- S— E z
cay ofC; j (), which depends on The overestimation of the ==
long- range contribution of;; j (r) can lead to an overestima-
tion of (L/(k§"d?/ o)), at the percolation threshold. Fortu-
nately, the diagrams representing the percolation thresholds APPENDIX B: FORMULAS FOR SPECIFIC FLUIDS
for the overestimation of the long-range contribution have

the same pattern as those for the overestimation of the decay ) o
of Cﬁ(r). For the relations expressed by Ef.1a, each coefficient

given by Eq.(4.16b is represented as

L b 3) —1/2 2
[E g(—) } Q.jl<0>} . (AY

1. Formulas for evaluating coefficientstn
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APPENDIX A: MEAN PHYSICAL CLUSTERS SIZE S 6. .
_ o X2=x5=—z,0e 2772, (B1b)
The Fourier transform of Eq2.4) is given as ™
L
2 [ St ( plpk)llrlk(k)][&q (pkpj) ’%kj(k)] Each coefficient given by Eq4.169 is represented for the
k= relations expressed by Eq$.19 and(6.1b as
:5”‘ for |k|:k, (Al)
where . ! 1(8)2 T+ ! a(l “)ple
X~o—5l =] e ——(1-e*
zo|2\0 ' Zo 0 s

B = . ik-r -~ = = ik-r 1 - .
Pij (k) fPIJ(r)e dr, Cj(k) fC,J(r)e dr, +E(ezg—2+efz”)(PiPi¢l+P%P%q&z),

The relation betweel;;(k) andQ;(k) is given as (B2a)
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. eio’/Z 1
x12~ 222012 _ _
zo(1+2/z,) 220'

Zo'a o 1 5 ,827[5 |6
zoe _¢1+P1¢1 X~ 5 P1Pi< ;R ;R(¢1+¢2)

2 220'

_a-z0 P2 P% 2
+P3¢, +v—(Pi¢1+P%¢2)] ¢+ P2¢2 b1+ E) ¢2H-
220' 1
5 P3 ) 1 (B2d)
X —R+ + P} , (B2b)
o 1¢1 2P2 ¢2 (220_)
e”zzalz e!zU/z 1 In Egs.(B2b)—(B2d), R is defined as
XA~ P2 —¢1— (P11 +P3
2o 14315, U¢1 20( 191+ P2¢))
Py L a¢+ 7o a¢+ 1 e7-1 .
— - — —_— = = —Zy0
T 200 (020 ' 20 70 R=S (B2¢)

2 2
P 1 1 1 P5
Pyt P232¢2 — = | PidtPagada

! (220) ! The coefficientx given by Eq.(4.189 is represented for

(B2c)  the relations expressed by E@6.19 and(6.1b as

2\ 2 A Zo

¢2

- X
2z,0e" 27
2 PZp

. F) 2 . o ) 2
520~ (—) R2(¢py+ o) zox +| ¢y + zox— 2( —) R? ( Pid’l"’ P%‘ﬁz)
1 o o zo

2
52
Pl

X

P’ L 4 [8)\?
¢1+—z¢z zox o—| —
Z,0 o

d 1, L
S 17 o (Pid1+Pagy) | +o—
Zo

220'

—Zo

XR2(1—e 27)(Plp,+ Pi,)

(P11+P3))

d L (Plgy P} 2 g
o b1 g (Pady 202) | "3 — =

220' 0

d e —1 . P}
X|—¢r1+ — Pid1+P3556,

220' o

2 (5\2_d 1, )
——|=| R ;¢1_Z(P1¢1+P2¢2)

X

. -d
z(re*ﬂ’;qbﬁ Plp,+ P§¢2). (B3)

When the relationz,o>1 is satisfied, Eq(4.150 re-  (B1b), and (B2b)—(B2d) into Eq. (4.19 divided by (GE
quires the relations given as Eq. (4.19 for j=1 andn=2 leads to
. X
~ —Zy0
0 2z,0€e %2 Eﬁ

0<P2<1, 0<P3<l1.

21

X
( 26" 217/2Z oe 220'/2 P1+ 220’e Zaxll)

This means thaR given by Eq.(B2e) may satisfyR+0 even :

at z,o=. By considering this fact, the formulas given « 50X N

above are derived. =270 %5y —26 YP1 R
The coefficients P, P}, P2, and P3) should be deter- v

mined using Eq(4.19. The coefficientR in the formulas d 1

given above can be estimated using an equation derived from X| S ¢~ o (Pids+P3,)

Eqg. (4.19 for j=1 andn=2. If the relations given by Eqgs. zo

(6.19—(6.19 are considered with substituting Eqd1a), (B4)

+ ZG_Z”EUXM] .
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The factorx should not be zero to obtain a significant solu-
tion from Eq.(4.19. Thus, Eq.(B4) givesR as

5 -1
—R=2z0X
g

111

d 1, L
;¢1_ —(P1¢1+P3¢2)
o

1

for z,o>1. (B5)

The ratioP3/P? in the formulas given above can be esti-
mated using an equation derived from E4.19 for j=2
andn=2. If the relations given by Eq46.139—(6.19 are
considered with substituting Eq&B1a), (B1b), and (B2b)—
(B2d) into Eq. (4.19 divided by (P?)%, Eq. (4.19 for j=2
andn=2 leads to

21
_2P
1

1
2

0~ —2z,0e %27 ( —2e 272z,ge %212

PiP1

2
2

el

P1

+270e 21t (B6)

The comparison between Eq&4) and (B6) results in

P53 P2
P—% P} for 220>1 (B7)

If the relations given by Eq96.19—(6.109 and (B7) are
considered with substituting Eq&81a and (B1b) into Eq.
(4.19 divided by (P?)*n/6, Eq.(4.19 for j=2 andn=1
leads to

—27 06_22” Ze—M/ZE 06_22" X
e ER T e
X12 —20/2
e T
]_ l

+P P2¢2)(?2 (222 e 20

)e

l

22

x22 |\ .
b —8| P1¢y

2p2
1"1

20'/2
za'e

12
—32,012 X

P? PIPI
x12 2

zzo- —
P%)

Pl

e

P

pl 22

+P3=T pl ¢2

X

0

2

4 d.+ ¢2|e

21
eZO’

21
(22+E)0'

B Y%}

o0

(B8a)

where
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:_i(Plpl(ﬁ +P1P1¢ )(E )ze—3iza/2X_21 x?2
—20111 2P 2P L0 PiP%Pi
P% .oxl2y2
+| PIgpy+ P%P_iéf’z) Z‘TIZZ ge 27— o2 P2
22
X
1¢1+ P2 P1¢2) zrrIZZ oe Zz{rxllw
171
Pl 2 12
—| ¢t ) b, |zoe ZUe—Zz‘ffzx“PZ. (B8h)
1

The coefficient) can be found agy~0 for 22>1. This
relation can contribute to simplifying E¢4.19 for j=1 and

n=1. In Eq. (B8a, the ratios Y5}/(z0+z0) and
e 2972} (z,0+ zo) are finite values foz,0>1 because of
Eqgs.(4.160 and (4.169.
On the other hand, Eq$4.4e and (4.15h for 0<d}/ o
<1 show that the coefficier®} should be given as
0<P}<1 for 0<d}/o<1, (B9)
since the pair connectedness should satRfy(r)~0 for

p1o(r)~0 derived from Eq.(2.1). As a result, Eq.(B2a)
should be rewritten as

-

o, L d bl
¢1+Z;(1_e )P1d1

v\ 2
. 1(d\*
ZO’Xll%'quslE E(;) e

1 - .
~(e—2+e %) (P})2¢,.

+
2

(B10)

In addition, the coefficienP? defined by Eq(4.15b in-
cludesP;4(z) andP,4z). The coefficients;;(z) are given
as the integration oP;;(r) expressed by Eq4.49. Hence,
the coeficient®;,(z) andP,,(z) should be zero, if attractive
forces do not exist betwedr=1 andj=2 particles and be-
tweeni=2 andj=2 particles. Thus, the features Bf5(r)
andP,,(r) in the absence of attractive forces can be demon-
strated by Eq(B9).

The coefficientPi can be estimated using an equation
derived from Eq.(4.19 for j=1 andn=1. If the relations
given by Egs.(6.1a—(6.19 are considered with Eq$B5),
(B7), and (B9) after substituting Eq9Bla), (B1b), (B2b)—
(B2d), and(B3) into Eq.(4.19 divided by (Pi)“, Eq.(4.19
for j=1 andn=1 leads to a factorized equation composed
of two factors as

JET

(Pp)2d1— PPy

NRI

[P+ <7>p>2¢>212{ 12¢72

(PD)? g d __ -
+2(Ztr) (e—2+e Z")P1+Z(r—(2 e %) }
-0, (B11a

031201-16



ANALYTICAL ESTIMATE OF PERCOLATION FCR.. ..

where
v 2
d 1
_ 2 L2 2~ pl
P=(Py) +<Pl>((r EUpl)

B (a 1 1)
——(1 e )PP, —P!|. (B11b
g

o

An equation that includes at ledstz should be meaningful,
so that Eq(B11g leads to

(P 1)2
20')2

. . . d .
x| (e —2+e *)Pi+z0—(2-e ) (=

1267275 —(Py)2¢py— PP+

N (| X¢
q|a<

(B119
In Eq. (B110), terms with P are ignored owing to & P3

<1 for 0<a§/a<1. As a result, Eq(B11¢ does not in-
clude ¢,.

2. A formula for evaluating the percolation threshold

The percolation threshold for the fluid mixture character-

ized by Eqgs.(6.19—(6.10 is determined using Ed5.7). If
the relations given by Eq$6.19—(6.19 are considered with

the coefficientR given by Eq.(B2e) and the ratios given by

Eqg. (B7) after substituting Eqs(B1a) and (B1b) into Eqg.
(5.7 multiplied byizoe*ZZ"(Pf)*z, a specific form of Eq.
(5.7) can be found for the fluid mixture as

X 1 eZo’/2 X22

+- ——2z0€ 20
2p2
Plpl

(lel
p2p2 2 7o 1P1d1

220'67 2o

12

(Qlcﬁl +Q3 P1¢2>

X
+Q2 24’2) e ~zoi2_
1

S eiolz 21

+—R = 220'e 220/2
o zo F’1

5> (P 101+ P36

1

P
¢l+—¢2)~0 for z,o>1. (B12)

1)
_ _Rxll
P

For the relations given by Eq$6.19—(6.10, the coeffi-
cientsQ[" defined by Eq(5.4d results in

L e 202[ e 20_1_%4 , d.
Qi=— - - P1——(zo+1)|,
rdoa o o
(B133
L e~202[ ¢ 1-z0
Q2: ) - v P2 f (Bl3b)
0 0
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Qf . ¢
F; ~—en~R, (B139
1
and
2
P—§ R (B13d
1

In Egs. (B13¢9 and (B13d), the expression given by Eq.
(B2e) is used.

If the coefficientR given by Eq.(B5), the ratios given by
Eqg. (B7), and the coefficient given by E¢B9) are consid-
ered after the substitution of Eq$B133—-(B13d, Egs.
(B2a)—(B2d), and (B3) into Eg. (B12), the percolation
threshold should be found from a formula given as

[Pa+ (Pp)2dba]| Po—

=0.

Equation (B11¢ is independent ofp,. The percolation
threshold also should be independentdaf Therefore, the
relation between the coefficients at the percolation threshold
should, according to EqB144a, be given by the formula

©w_1-70 . d 1d
Pl+—+——

< P1=0.
(z0)? O 700

(B14b)

In Eqg. (B14b), terms with P% are ignored owing to &P%
<1 for O<a%/a<1. As a result it does not includg,.

APPENDIX C: THE PAIR CONNECTEDNESS

The behavior of the pair connectedne3g(r) can be
readily estimated at the particular distanceoy; .

The second term on the right-hand side of E41) is a
continuous function ofr at r=oy;. Accordingly, the pair
connectednesB;;(r) given by Eq.(4.1) must satisfy

€]

d
aQij(r) . }
oijT€

(CD

lim 27 o[ Pjj(oij+ €)= Pij (o, —

e—0

([ d
:_i[no[ aQij(r) r:m“_

1]

If Egs. (4.49 and (4.40 are considered with the relation
Pij(r)=0 (r<oj;) after substituting Eq.(4.4a into Eq.
(C1), the pair connectedne®s; (r) atr = oj; can be found as

d" a"
(Zna, L _pr|ezmeii2
. o

"2

10'J
>

e aij n=1

Plj(o'lj

To derive Eq.(C2), Egs.(4.153 and (4.15h must be con-
sidered.
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By considering Eq(6.13, the coefficienta}‘/oj given by
Eq. (4.183 can be rewritten as

1

e—io/Zi:z 22 Ue_VZZU X o
o 3177 PP

1 . X22
- ,—Zzoe_ 220 Pl

X
z0 pzp2 !

. . 12 p2
—20/2 0= 25012 J
+e e 27— —
P1

., (c3a
P

2,012 ajz WR( 2w 20 X o
e <2 — = A 220'67 2 20
o 3 PiP1

eiolz 21 2

Zzo_e—EZU/ZX_ Pl_ Xll_j

X 2
zo P? . P1
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whereR given by Eq.(B2e) is used.

If the use of Eqs(B2a—(B2d) and (B3) is considered
with the relations given by Eq$6.19 and (6.1b after sub-
stituting the coefficientsa?/oj given by Egs.(C339 and
(C3b) into Eq. (C2), the pair connectedned3; (o) for i
=1 andj=1 particles can be found @ =0 as

(Cda

5o
Z”( PHPyby) L.

Pu()= 15| 5~ P

In Eq. (C4a, terms with P3 are ignored owing to €& P3
<1 for 0<a§/a<1. As a result, Eq(C43a does not include

b2
Similarly, the other pair connectedne3s(o) fori-j par-

ticles can be found as
PiA0)=Pyy(0)=Py(0)=0. (C4b

In addition, Egs(B5), (B7), and(B9) are used to derive Egs.
(C4a and(C4b).

[1] J. C. Nieuwoudt and J. V. Sengers, J. Chem. PB{¥s.457
(1988.

[2] P. D. Gallagher, M. L. Kurnaz, and J. V. Maher, Phys. Rev. A

46, 7750(1992; P. D. Gallagher and J. V. Mahehid. 46,
2012(1992; D. Beysens and D. Este, Phys. Rev. Lett54,
2123(1985.

[3] D. Beysens and D. Este, Phys. Rev. Let64, 2123(1985; Y.
Jayalakssmi and E. W. Kaldhid. 78, 1379(1997).

[4] K. To and H. J. Choi, Phys. Rev. LeR0, 536 (1998.

[5] N. B. Wilding, F. Schmid, and P. Nielaba, Phys. Rev5§
2201(1998.

[6] I. R. Tsang and I. J. Tsang, Phys. Rev6& 2684 (1999.

[7] T. L. Hill, Statistical Mechanic$Dover, New York, 198Y.
[8] A. Coniglio, U. De Angelis, and A. Forlani, J. Phys1A, 1123
(2977.
[9] R. J. Baxter, J. Chem. Phys2, 4559(1970.
[10] T. Kaneko, Phys. Rev. B8, 5808(1998.
[11] J. Xu and G. Stell, J. Chem. Phy&9, 1101(1988.
[12] M. Ginoza, J. Phys.: Condens. Mat&r1439(1994); L. Blum
and J. S. Hge, J. Stat. Physl9, 317(1978.
[13] T. Vicsek, Fractal Growth PhenomenéNorld Scientific, Tea-
neck, NJ, 1992
[14] A. AlSunaidi, M. Lach-hab, A. E. Gonzalez, and E. Blaisten-
Barojas, Phys. Rev. B1, 550 (2000.

031201-18



